A large amount of concrete radioactive waste is generated during the decommissioning of nuclear facilities, including nuclear power plants, and it is expected that the radioactive waste management expenses will be huge. In order to reduce the concrete radioactive waste, a decontamination or removal process is required, but working on concrete may present a risk of worker exposure in a high-radioactive space. Therefore, in this study, a remote control integrated decontamination equipment that can reduce concrete radioactive waste and ensure the safety of workers during the concrete decontamination process in a high-radioactive space was developed. The integrated decontamination equipment consists of remote movement, automatic surface contamination measurement, automatic surface decontamination and debris/dust removal systems. The remote movement system generates ‘mapping data’ of topographic features for the work space and ‘location data’ that coordinates the location of the integrated decontamination equipment through LiDAR (Light Detection and Ranging) sensor and SLAM (Simultaneous Localization And Mapping) technique. The user can check the location of the integrated decontamination equipment through ‘location data’ outside the work space, and can move it by remote control through wired/wireless communication. The automatic surface contamination measurement system uses a radiation detector and an automatic measurement algorithm to generate ‘surface measurement data’ based on the measurement distance interval and measurement time set by the user. ‘Surface measurement data’ is combined with ‘location data’ to create a visualized map of radioactive contamination, and users can intuitively realize the location and degree of contamination based on the map. The automatic surface decontamination system uses a laser and an automatic removal algorithm to decontaminate the concrete surface. Concrete debris and dust generated during this process were collected by the debris/dust removal system, minimizing waste generation and radiation exposure due to secondary pollution. The integrated decontamination equipment developed through this study was applied with technologies that reduced radioactive concrete waste and ensured the safety of workers. If technology verification and on-site applicability review are performed using concrete specimens simulating nuclear power plant or similar environments, it is reasoned to contribute to the domestic and overseas decommissioning industry.