논문 상세보기

Development of Rod Performance Evaluation Code to Resolve Integrity Issues of CANDU Spent Fuel

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430266
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Prior to the investigations on fuel degradation it is necessary to describe the reference characteristics of the spent fuel. It establishes the initial condition of the reference fuel bundle at the start of dry storage. In a few technology areas, CANDU fuels have not yet developed comprehensive analysis tools anywhere near the levels in the LWR industry. This requires significantly improved computer codes for CANDU fuel design. In KNF, in-house fuel performance code was developed to predict the overall behavior of a fuel rod under normal operating conditions. It includes the analysis modules to predict temperature, pellet cracking and deformation, clad stress and strain at the mid-plane of the pellet and pellet-pellet interfaces, fission gas release and internal gas pressure. The main focus of the code is to provide information on initial conditions prior to dry storage, such as fission gas inventory and its distribution within the fuel pellet, initial volumes of storage spaces and their locations, radial profile of heat generation within the pellet, etc. Potential degradation mechanisms that may affect sheath integrity of CANDU spent fuel during dry storage are: creep rupture under internal gas pressure, sheath oxidation in air environment, stress corrosion cracking, delayed hydride cracking, and sheath splitting due to UO2 oxidation for a defective fuel. To upgrade the developed code that address all the damage mechanisms, the first step was a review of the available technical information on phenomena relevant to fuel integrity. The second step was an examination of the technical bases of all modules of the in-house code, identify and extend the ranges of all modules to required operating ranges. Further improvements being considered include upgrades of the analysis module to achieve sufficient accuracy in key output parameters. The emphasis in the near future will be on validation of the in-house code according to a rigorous and formal methodology. The developed models provide a platform for research and industrial applications, including the design of fuel behavior experiments and prediction of safe operating margins for CANDU spent fuel.

저자
  • Kang Moon Lee(KEPCO Nuclear Fuel, 242, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon) Corresponding author
  • Nam Ho Lee(KEPCO Nuclear Fuel, 242, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon)
  • Seong Ki Lee(KEPCO Nuclear Fuel, 242, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon)