논문 상세보기

Effect of Sulfate Radical on Advanced Oxidation Process for Treatment of Liquid Scintillation Waste

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430499
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Liquid scintillation cocktail is liquid waste, which consists of an organic solvent, scintillator, surfactant, and radionuclide. Large volumes of liquid scintillation waste are generated each year, and both the organic compound and radionuclide content can negatively affect on the health and the environment. Therefore, the liquid scintillation waste should be treated in an appropriate way. In this study, to facilitate the treatment of liquid scintillation waste, the sulfate-radical advanced oxidation process (SR-AOP) was performed for the mineralization of liquid scintillator waste. In SR-AOP, highly reactive sulfate radicals, which react more selectively and efficiently with organic compounds, are produced in situ by cleaving the peroxide bond in the persulfate molecule. For the experiment, 100 times diluted ULTIMA GOLD-LLT (initial TOC=699,800 ppm) was used as a liquid scintillation waste. The TOC removal efficiency of liquid scintillation waste by the OXONE (potassium peroxymonosulfate, PMS, 2KHSO5+KHSO4+K2SO4) and sodium persulfate (PS) with varying dosages (4–12 mM) was tested, and the effects of Co2+ and Cu2+ catalysts were compared at a range of pHs (3, 7, and 9). The experimental results demonstrated that 91% TOC removal of ULTIMA GOLD-LLT could be achieved for SR-AOP at initial pH=9, Co2+=1.2 mM (catalyst), PMS=4.8 mM (oxidant) for 60 min reaction. Compared to traditional Fenton AOP which is effective only at low pH, PMS based SR-AOP with Co2+ catalyst is effective at wide range of pHs and less dependent on the treatment efficiency of the operational pH. Therefore, it can be useful for the mineralization of liquid scintillation waste which is difficult to treat with a general treatment method due to the mixture of various organic compounds.

저자
  • Wooyong Um(Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do) Corresponding author
  • Seokhoon Yang(Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do)