The sorption behavior of Se(IV) on montmorillonite clay, a promising buffer and backfill material, was investigated in the presence of aquatic fulvic acid. Selenium-79 is one of the major radioactive nuclides which are long-lived and highly mobile in subsurface environments. Moreover, it is highly toxic even in small amounts, so the selenium quantity in soil and groundwater should be assessed. Although natural organic matters such as humic and fulvic acids are present in the environment, the influence of natural organic matters on Se(IV) migration has not yet been extensively studied. The batch sorption experiments were performed under oxic conditions. Suwannee River III standard aquatic fulvic acid (International Humic Substances Society) was used to build an organicrich environment. The N2 – BET surface area of the montmorillonite (Clay Minerals Society) was 97 ± 5 m2·g−1. The montmorillonite suspensions with/without fulvic acid were equilibrated with air before adding Na2SeO3. The solid-to-liquid ratio was 5 g·L−1, the ionic medium was 0.1 M NaCl, fulvic acid concentration was 50 mg·L−1, and the final pH was 3. The horizontal vial roller was used to prevent the clay from sinking. After 7 days of sorption at room temperature, the suspensions were centrifuged at 10,600 g for 15 min and filtered through 0.2 μm PTFE filters. The colloidal fulvic selenide and free Se(IV) concentrations were entirely measured by inductively coupled plasma–mass spectrometry (ICP-MS). The sorption results were fitted with Langmuir and Freundlich models. At concentrations lower than 20 μM, the distribution coefficients (Kd) were 50 ± 9 L·kg−1 without fulvic acid, and 36 ± 5 L·kg−1 with 50 mg·L−1 fulvic acid. For the concentrations between 20 and 100 μM, the Kd values without and with fulvic acid were 16 ± 7 L·kg−1 and 10 ± 1 L·kg−1, respectively. As a result, it turned out that fulvic acid interferes with the sorption of Se(IV) on montmorillonite in competition with the selenite anion. This indicates that such organic matter may facilitate the migration of selenium in deep geological groundwaters.