논문 상세보기

Synthesis and Characterization of New Copper Based 2D MOFs With Subsequent Application for I2 Trapping

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430669
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Efficient capture and storage of radioactive iodine (consisting of two isotopes: 129I and 131I), produced or released from nuclear activities, are of paramount importance for sustainable development of nuclear energy due to their volatility and long half-life. Therefore, it is very important to develop new adsorbents for efficient utilization of radioactive iodine from nuclear waste. Various methods and materials are used for I2 capturing and removing, including MOFs due to their high porosity and fast adsorption kinetics, which are rightfully considered effective sorbents for removing I2. Metal–organic frameworks (MOFs) are porous crystalline materials which have diverse pore geometry and unique physicochemical properties, have attracted enormous attention for use in gas storage, separation and catalysis. The ability of MOFs to adsorb volatile products at room temperature can significantly improve the cost-effectiveness of the utilization process. This work describes the synthesis and characterization of three new metal-organic frameworks based on pyrazine (pyz), 44’bipyridine (bpy), 1,2 -bis(4 - pyridyl) – ethane (bpe) and copper (II) hexafluorozironate, as potential adsorbents for I2 capture. All of these three MOFs exhibit a two - dimensional (2D) crystal structure consisting from infinity non-crossing linear chains. The crystal structure of [Cu(pyz)2(ZrF6)2(H2O)2], [Cu(bpy)4(H2O)2ZrF6] and [Cu(bpe)4(H2O)2ZrF6] were characterized using powder X-ray diffraction (PXRD), single crystal X-ray diffraction (SC-XRD). Comparative characteristics of synthesized MOFs, including Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were also performed. The I2 sorption experiments were examined by UV-vis spectroscopy.

저자
  • Viktoriya Kim(University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon)
  • Jeongmook Lee(University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon)
  • Tae-Hyeong Kim(Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon)
  • Jong-Yun Kim(University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon)
  • Sang Ho Lim(University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon) Corresponding author