Polyoxometalates (POMs) are nanoclusters composed of transition metals with high oxidation states. Owing to their redox properties and structural diversity, POMs have been applied to broad fields, such as catalysis, materials, and medicine. Among various fields of application, POMs play an important role in radiochemistry. POMs can form complexes with tri- and tetravalent lanthanides and actinides (radioactive elements), which may be good sequestrators or agents for separating nuclear wastes. Among the most prominent POM structures, Anderson-type POMs with a general formula of [Hy(XO6)M6O18]n− (y=0–6, n=2–8, M=addenda atom, X=heteroatom) represent one of the basic topological structures of the POM family. An important feature of Anderson type POMs is incorporating a large number of various heteroatoms with different size and oxidation states, which can lead to tune chemical properties. Interestingly, no example of Anderson type POMs with early transition metal ions in the heteroatom site has been reported to date. Herein, we discovered that the Anderson POM Na2K6Ti0.92W6.08O24·12H2O, which consists of pure inorganic framework built from a central Ti core supported by six WO6 inorganic scaffold, and the crystal structure was confirmed and refined using single-crystal X-ray diffraction (SC-XRD). In addition, structural characterizations, including, Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and Inductively coupled plasma-optical emission spectroscopy (ICP-OES) were performed.