When the recycling technology of spent nuclear fuels (SNF) for future nuclear reactor systems and the treatment technology of SNF for disposing of in a disposal site use a molten salt such as LiCl-KCl eutectic as a processing medium one of the essential unit processes is a distillation process that remove the salt component mixed with fission products recovered. Especially, in case of Pyro-SFR recycling system the recovered nuclear fuel materials such as U, TRU and some of rare earths come from main three processes (electro-refining, electro-winning, and drawdown processes) for recycling of SNF. These recovered fuel materials contain large portion of molten salt or liquid cadmium which requires removal of them by distillation. In spent nuclear fuels discharged from PWR the portion of composing element is as follows. Uranium is about 95%, other actinides such as transuranic elements (TRU; Np, Pu, Am, Cm) is about 1%, the rare earths (lanthanides) is about 1%, and the other elements is about 3%. For example, americium (Am) in the recovered fuel materials has a problem that the reported loss of Am inevitably occurs during the vacuum salt distillation operation. A new segregation method of AMM (actinide metal mixture)–salt system is based on the difference in melting point of the actinide elements. It is possible to apply this segregation method to recovering other actinides from AMM with accompanied salt because of relatively large amount and lower melting point of a specific element in other actinides avoiding vacuum salt distillation. This new segregation method successfully tested using a surrogate element such as aluminum due to its similar melting point with a specific element. The segregation principle is solid-liquid separation, thus the solidified actinides mixture ingot can take out of a molten salt medium.