검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 219

        16.
        2023.11 구독 인증기관·개인회원 무료
        The potentiostatic titration method is one of the effective methods for determining the total uranium assay in high-concentration uranium samples. A notable approach is the Devies-Grey titration method, which was first reported in 1964. In the U sample treatment process of this method, the reduction of U(VI) by Fe(II) is initially a non-spontaneous reaction based on the reduction potentials of the two half-reactions. However, in a high-concentration phosphoric acid medium, the reduction potential of Fe(II) is enhanced, simultaneously increasing the reduction potential of U(VI). As a result, the redox reaction becomes spontaneous due to these dual effects. On the other hand, the reaction kinetics can elucidate why nitric acid does not oxidize U(IV) during the oxidation of Fe(II) to Fe(III). Furthermore, the role of Mo(VI)/Mo(V) as a redox enhancer, employed alongside nitric acid, can be comprehended through electrochemical means. Similarly, the function of V(IV) as an electrochemical enhancer, aiding the action of the Cr(VI) titrant, becomes understandable. Grasping the various phenomena that manifest during the titration process is imperative for refining existing titration methods and pioneering new ones.
        17.
        2023.11 구독 인증기관·개인회원 무료
        This study explores the impact of metal doping on the surface structure of spent nuclear fuels (SNFs), particularly uranium dioxide (UO2). SNFs undergo significant microstructural changes during irradiation, affecting their physical and chemical properties. Certain elements, including actinides and lanthanides, can integrate into the UO2 lattice, leading to non-stoichiometry based on their oxidation state and environmental conditions. These modifications are closely linked to phenomena like corrosion and oxidation of UO2, making it essential to thoroughly characterize SNFs influenced by specific element doping for disposal or interim storage decisions. The research employs X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy to investigate the surface structure of UO2 samples doped with elements such as Nd3+, Gd3+, Zr4+, Th4+, and ε-particles (Mo, Ru, Pd). To manufacture these samples, UO2 powders are mixed and pelletized with the respective dopant oxide powders. The resulting pellet samples are sintered under specific conditions. The XRD analysis reveals that the lattice parameters of (U,Nd)O2, (U,Gd)O2, (U,Zr)O2, and (U,Th)O2 linearly vary with increasing doping levels, suggesting the formation of solid solutions. SEM images show that the grain size decreases with higher doping levels in (U,Gd)O2, (U,Nd)O2, and (U,Zr)O2, while the change is less pronounced in (U,Th)O2. Raman spectroscopy uncovers that U0.9Gd0.1O2-x and U0.9Nd0.1O2-x exhibit defect structures related to oxygen vacancies, induced by trivalent elements replacing U4+, distorting the UO2 lattice. In contrast, U0.9Zr0.1O2 shows no oxygen vacancy-related defects but features a distinct peak, likely indicating the formation of a ZrO8-type complex within the UO2 lattice. ε-Particle doped uranium dioxide shows minimal deviations in surface properties compared to pure UO2. This structural characterization of metal-doped and ε-particle-doped UO2 enhances our understanding of spent nuclear fuel behavior, with implications for the characterization of radioactive materials. This research provides valuable insights into how specific element doping affects the properties of SNFs, which is crucial for managing and disposing of these materials safely.
        18.
        2023.11 구독 인증기관·개인회원 무료
        Bis (2-ethylhexyl)phosphoric acid (HDEHP) is a renowned extractant, favored for its affinity to selectively remove uranium via its P=O groups. We previously synthesized HDEHP-functionalized mesoporous silica microspheres for solid-phase uranium adsorption. Herein, we investigated the kinetic and isothermal behavior of uranyl ion adsorption in mesoporous silica microspheres functionalized with phosphate groups. Adsorption experiments were conducted by equilibrating 20 mg of silica samples with 50 mL of uranium solutions, with concentrations ranging from 10 to 100 mgU L−1 for isotherms and 100 mgU L−1 for kinetics. Three distinct samples were prepared with varying HDEHP to TEOS molar ratios (x = 0.16 and 0.24) and underwent hydrothermal treatment at different temperatures, resulting in distinct textural properties. Contact times spanned from 1 to 120 hours. For x = 0.16 samples, it took around 50 and 11 hours to reach equilibrium for the hydrothermally treated samples at 343 K and 373 K, respectively. Adsorbed quantities were similar (99 and 101 mg g-1, respectively), indicating consistent functional group content. This suggests that the key factor influencing uranium adsorption kinetics is pore size of the silica. The sample treated at 373 K, with a larger pore size (22.7 nm) compared to 343 K (11.5 nm), experienced less steric hindrance, allowing uranium species to diffuse more easily through the mesopores. The data confirmed the excellent fit of pseudo-second-order kinetic model (R2 > 0.999) and closely matched the experimental value, suggesting that chemisorption governs the rate-controlling step. To gain further insights into uranium adsorption behavior, we conducted an adsorption isotherm analysis at various initial concentrations under a constant pH of 4. Both the Langmuir and Freundlich isotherm models were applied, with the Langmuir model providing a superior fit. The relatively high R2 value indicated its effectiveness in describing the adsorption process, suggesting homogenous sorbate adsorption on an energetically uniform adsorbent surface via a monolayer adsorption and constant adsorption site density, without any interaction between adsorbates on adjacent sites. Remarkably, differences in surface area did not significantly impact uranium removal efficiency. This observation strongly suggests that the adsorption capacity is primarily governed by the loading amount of HDEHP and the inner-sphere complexation with the phosphoryl group (O=P). Our silica composite exhibited an impressive adsorption capacity of 133 mg g-1, surpassing the results reported in the majority of other silica literature.
        19.
        2023.11 구독 인증기관·개인회원 무료
        Radiation workers, especially those dealing with Uranium isotopes, can potentially intake Uranium -containing materials through their respiratory and digestive systems. According to the “Regulations on the Measurement and Calculation of Internal Exposure” from Nuclear Safety and Security Commission (NSSC), those who intend to work in or enter the nuclear facilities with a risk of exceeding 2 mSv exposure per year should be examined the internal exposure. However, when it comes to in-vitro bioassay, Uranium intake through drinking water can affect the quantitative analysis. The International Commission on Radiological Protection (ICRP) reported in ICRP Publication 23 (Report on the Task Group on Reference Man) that the reference man excretes Uranium in the urine (0.05-0.5 μg/day) and feces (1.4-1.8 μg/day). Korea Atomic Energy Research Institute (KAERI) set the 90.5 ng/day as the 238U background of workers handing Uranium based on the daily Uranium intake of Koreans. In this research, we examined the possible effects of Uranium in drinking water on internal exposure by analyzing the concentration of Uranium in bottled waters from various water sources sold in the domestic market and a water from the water purifier. The 238U concentration results of analyzing 11 bottled waters and 1 purified water, were ranged from 0 to 10.2 μg/L. All the results were satisfied the standard of 30 μg/L according to “Regulations for Drinking Water Quality Standards and Inspection” enacted by the Ministry of Environment. However, various concentrations were shown depending on the water sources. Assuming that these concentrations of water are consumed by drinking 1 L per day, the internal dose assessment result is 0 to 0.94 mSv. On the other hand, if it is assumed to be inhaled, it can be an overestimated because the dose coefficient of inhalation, Type M is higher than that of ingestion, f1=0.02 which are the values recommended by ICRP Publication 78 (Individual Monitoring for Internal Exposure of Workers) when the Uranium compound is unspecified. In case of two workers at KAERI, the daily excretion of urine was 151 and 120 ng/day respectively in the first quarter monitoring. However after changing the kind of drinking water in the second quarter monitoring, it dropped to 17.4 and 15.4 ng/day respectively. Through this study, it is confirmed that the Uranium background in urine can be analyzed differently depending on the kind of drinking water consumed by each worker. Depending on the Uranium concentration of drinking water, the internal exposure dose assessment can be overestimated or underestimated. Therefore, the Uranium concentration and intake amount according to the kind of drinking water should be considered for in-vitro bioassays of Uranium handlers. Furthermore, if necessary, the Uranium isotope ratio analysis in urine and the handling information should be comprehensively considered. In addition, in order to exclude the effect of intake through the digestive system, replacing the kind of drinking water can be considered. The additional analysis such as in-vivo bioassay and 24 hours urine analysis rather than spot samples can be also recommended.
        20.
        2023.11 구독 인증기관·개인회원 무료
        In all geodisposal scenarios it is key to understand the interaction of radionuclides with mineral particles during their formation/recrystallisation. Studying processes at the molecular scale provides insight into long-term radionuclide behaviour. Uranium is a significant radionuclide in higher activity wastes destined for geological disposal, and iron (oxyhydr) oxides (e.g. goethite, 􀟙-FeOOH). are ubiquitous in and around these systems, formed via processes including metal corrosion and microbially induced reactions. There are numerous reports of uranium-incorporation into iron (oxyhydr) oxides, therefore it has been suggested that they may be a barrier to uranium migration in geodisposal systems. However, long-term stability of these phases during environmental perturbations are unexplored. Specifically, U-incorporated iron (oxyhydr) oxide phases may interact with Fe(II) and sulphide from biological or geological origin. Firstly, electron transfer occurs between adsorbed Fe(II) and iron oxyhydroxides, with potential for changes in the speciation of incorporated uranium e.g. oxidation state changes and/or release. Secondly, on exposure to aqueous sulfide, iron (oxyhydr) oxides undergo reductive dissolution and recrystallisation to iron sulphides. Understanding the fate of incorporated uranium during these process in key to understanding its long term behaviour in subsurface systems. A series of experimental studies were undertaken where U(VI)-goethite was synthesized then reacted with either aqueous Fe(II) or S(-II), and the system monitored over time using geochemical analysis and X-ray absorption spectroscopy (XAS) techniques e.g. U LIII-edge and MIV-edge HERFD-XANES. Reaction with aqueous Fe(II) resulted in electron transfer between Fe(II) and U(VI)-goethite, with > 50% U(VI) reduced to U(V). XAS analysis revealed that U remained within the goethite structure, and electron transfer only occurred within the outermost atomic layers of goethite. which led to U reduction. Rapid reductive dissolution of U(VI)-goethite occurred on reaction with sulfide at pH7. A transient release of aqueous U was observed during the first day, likely due to uranyl(VI)-persulfide species. However, U was retained in the solid phase in the longer term. In contrast, the sulfidation of U adsorbed to ferrihydrite at pH 12.2 led to the immediate release of U (< 10% Utotal) associated with a colloidal erdite (NaFeS2·2H2O) phase. Moreover, in the bulk phase the surface of ferrihydrite was passivated by sulfide, and U was found to have been trapped within surface associated erdite-like fibres. Overall, these studies further understanding of the long-term behaviour of U-incorporated iron (oxyhydr)oxides supporting the overarching concept of iron (oxyhydr) oxides acting as a barrier to U migration.
        1 2 3 4 5