논문 상세보기

Migration Behavior of Simulated HLW Leachate in Granite and Biotite Gneiss Aquifers

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430800
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

The safe disposal of high-level radioactive waste is a critical concern in many countries, especially in the context of the increasing use of nuclear power to overcome climate change. To provide a comprehensive understanding of the behavior of the radionuclides in the crystalline natural barrier, sorption of the artificially synthesized high-level radioactive waste (HLW) leachate was conducted. Granite (-1,000 m from ground level) and biotite gneiss (-100 m from ground level) rock cores were collected from Gyeongju and Gwacheon, respectively. The rock cores were milled with a jaw crusher and steel disk mill and then sieved. The crushed rocks with a diameter of 0.6 – 1.0 mm were selected, washed three times with deionized water, and then dried. To synthesize the simulated HLW leachate, representative elements (U(VI), Se(IV), Mo(VI), and Ni(II)) were added to natural groundwater collected from Gyeongju. The kinetic sorption experiment was performed in a polypropylene bottle with a solid-to-liquid ratio of 100 g/L in the orbital shaking incubator (200 rotations per min, 25.0°C). After the sorption, the supernatants were filtered by a 0.2-μm polytetrafluoroethylene syringe filter and subsequently analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). Through the kinetic change of aqueous concentration, the contact time has been determined to be 7 days. Ni(II) showed the highest distribution coefficients (Kd = 0.81 L/m2 for granite and 8 – 16 L/m2 for biotite gneiss), followed by U(VI) (Kd = 0.03 – 0.04 L/m2 for granite and 0.04 – 0.05 L/m2 for biotite gneiss). Highly mobile nuclides such as Se(IV) (Kd = 0.02 L/m2 for granite and 0.03 L/m2 for biotite gneiss) and Mo(VI) (Kd = 0.01 – 0.02 L/m2 for granite and 0.01 L/m2 for biotite gneiss) showed the lowest distribution coefficient. Our study provides insights into the migration-retention behaviors of the HLW leachate with granite and biotite gneiss in geological systems and verifies the sorption parameters, e.g., distribution coefficients, experimentally produced by other groups to ensure the safe disposal of HLW.

저자
  • Hyeonjin Eun(Korea Advanced Institute of Science and Technology (KAIST))
  • Seungwoo Lee(Korea Advanced Institute of Science and Technology (KAIST))
  • Jong-Il Yun(Korea Advanced Institute of Science and Technology (KAIST)) Corresponding author