Technetium-99 is identified as an element of interest for the safety assessment of a deep geological repository for used nuclear fuel. The sorption behavior of Tc(IV) onto MX-80 and granite in Ca-Na-Cl solutions of varying ionic strength (0.05–1 mol·kgw−1 (m)) and across a pHm range of 4–9 was studied in this paper. Sorption of Tc(IV) was found to be independent of ionic strength in the range of 0.05 to 1 m for both MX-80 and granite. Sorption of Tc(IV) on MX-80 increased with pHm from 4 to 7 and then decreased with pHm from 8 to 9. Sorption of Tc(IV) on granite gradually increased with pHm from 4 to 8 and then became almost constant or slightly decreased with pHm from 8 to 9. A 2 site protolysis non-electrostatic surface complexation and cation exchange sorption model successfully simulated sorption of Tc(IV) on MX-80 and granite. Optimized values of surface complexation constants (log K0) are proposed.
A deep geological repository for disposal of high-level radioactive waste (HLW) consists of the canister, buffer material, and natural rock. If radionuclides leak from a disposal container, it can pass through buffer materials and rock, and move into the biosphere. Transport and migration of radionuclides in the rock differently were affected by the fracture type, filling minerals in the fracture, and the chemical and hydraulic properties of the groundwater. In this study, aperture distribution in fractured granite block was investigated by hydraulic test and CFD analysis. The fractured rock block (1 m × 0.6 m × 0.6 m), which is simulated as natural barrier, was prepared from Iksan, Jeollabuk-do. 9 test holes were drilled and packer system was installed to perform hydraulic test at the surface of fracture. 3D model simulated for aperture distribution of rock block was made using results of hydraulic test. And then, CFD analysis was performed to evaluate the co-relation between experiment results and analysis results using FLUENT code.
Th(IV) is a stable actinide that can act as a chemical analogue of U(IV) and Pu(IV), which are important radionuclides in safety assessments of deep geological repositories (DGR). Therefore, to understand the geochemical behaviour of U(IV) and Pu(IV), batch sorption of Th(IV) onto crystalline rocks were performed in oxidising conditions. The distribution coefficients (Kd) of Th(IV) were of particular interest. Gyeongju fresh groundwater (GF) and Gyeongju brackish groundwater (GB) were obtained at the Gyeongju Low and Intermediate Level Radioactive Waste (LILW) Disposal Facility. Crystalline granite (gr) and biotite gneiss (bg) were collected in Gyeongju and Gwacheon respectively and were grounded to a particle size smaller than 150 μm. Sorption samples were continuously shaken for 7 days under 200 rpm at 25°C. The liquid-to-solid ratio (V/m) was 200 L·kg-1. Th(IV) concentrations of the sorption samples were determined by UV-Vis-NIR absorption colorimetry from the formation of Th(IV)-arsenazo III complexes. Although the method allowed the initial Th(IV) concentrations to be determined, the final Th(IV) concentrations fell below the limit of detection (LOD), 6.27×10-9 mol·L-1. Taking the LOD as the final concentrations, conservative Kd were calculated to be 4,410 L·kg-1 for GF-gr and GF-bg, and 7,830 L·kg-1 for GB-gr and GB-bg. The result indicates a strong sorption affinity of Th(IV) onto granite and biotite gneiss within Gyeongju groundwater, suggesting a similar behaviour for U(IV) and Pu(IV). Furthermore, comparison of the conservative Kd obtained from the experiment were compared with existing Kd values of Th(IV). Such analysis and comparison of Th(IV) Kd in various types of groundwater could help locate the optimal site for a DGR in South Korea.
A disposal research program for HLW has been carried out since 1997 with the aim of establishing the preliminary concept of geological disposal in Korea. The preliminary studies were conducted by conducting manufacture and installation of an in-situ nuclide migration system in KAERI Underground Research Tunnel (KURT). Nuclides could be released from a deep underground disposal facility due to thermal and physicochemical changes into the surrounding environments. Understanding on the migration and retardation processes of nuclides in a fractured rock is very important in the safety assessment for the radioactive waste disposal. In this study, we evaluated fracture filling minerals and aperture distribution (3D map) along the fracture surfaces under the controlled conditions. The fractured granite block which has a single natural fracture of 1 m scale was sampled in a domestic quarry (Iksan), which groundwater had been flowed through. This rock has an interconnected porosity of 0.36 with the specific gravity of 2.57. The experimental set-up with the granite block with dimensions of 100×60×60 (cm). A flow of de-ionized water through the fracture between pairs of boreholes was initiated and the pressure required to maintain a steady flow was measured. In additions, fracture filling minerals were sampled and examined by mineralogical and chemical analyses. There are phyllosilicate minerals such as illite, kaolinite, and chlorite including calcite, which are fracture filling minerals. The illite and kaolinite usually coexist in the fracture, where their content ratio is different according to which mineral is predominant. For the evaluation of fracture, surface was divided into an imaginary matrix of 20×20 sub-squares as schematically. The calculated results are expressed as a two dimensional contour and a three dimensional surface plot for the aperture distribution in the fracture. The aperture value is distributed between 0.075 and 0.114 mm and the mean aperture value is 0.095 mm. The fracture volume is about 55 ml. Also the 137Cs sorption (batch test) distribution coefficients increased to Kd = 800~860 mL/g in the fractured rock because of the presence of secondary minerals formed by weathering processes, compared to the bedrock (Kd = 750~830 mL/g). These results will be very useful for the evaluation of environmental factor affecting the nuclides migration and retardation.
The safe disposal of high-level radioactive waste is a critical concern in many countries, especially in the context of the increasing use of nuclear power to overcome climate change. To provide a comprehensive understanding of the behavior of the radionuclides in the crystalline natural barrier, sorption of the artificially synthesized high-level radioactive waste (HLW) leachate was conducted. Granite (-1,000 m from ground level) and biotite gneiss (-100 m from ground level) rock cores were collected from Gyeongju and Gwacheon, respectively. The rock cores were milled with a jaw crusher and steel disk mill and then sieved. The crushed rocks with a diameter of 0.6 – 1.0 mm were selected, washed three times with deionized water, and then dried. To synthesize the simulated HLW leachate, representative elements (U(VI), Se(IV), Mo(VI), and Ni(II)) were added to natural groundwater collected from Gyeongju. The kinetic sorption experiment was performed in a polypropylene bottle with a solid-to-liquid ratio of 100 g/L in the orbital shaking incubator (200 rotations per min, 25.0°C). After the sorption, the supernatants were filtered by a 0.2-μm polytetrafluoroethylene syringe filter and subsequently analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). Through the kinetic change of aqueous concentration, the contact time has been determined to be 7 days. Ni(II) showed the highest distribution coefficients (Kd = 0.81 L/m2 for granite and 8 – 16 L/m2 for biotite gneiss), followed by U(VI) (Kd = 0.03 – 0.04 L/m2 for granite and 0.04 – 0.05 L/m2 for biotite gneiss). Highly mobile nuclides such as Se(IV) (Kd = 0.02 L/m2 for granite and 0.03 L/m2 for biotite gneiss) and Mo(VI) (Kd = 0.01 – 0.02 L/m2 for granite and 0.01 L/m2 for biotite gneiss) showed the lowest distribution coefficient. Our study provides insights into the migration-retention behaviors of the HLW leachate with granite and biotite gneiss in geological systems and verifies the sorption parameters, e.g., distribution coefficients, experimentally produced by other groups to ensure the safe disposal of HLW.
경기육괴 중서부에 위치한 화성시 우음도 일대에는 고원생대 호상편마암을 관입하고 있는 중기 쥐라기의 화강 암 암맥군이 발달한다. 우음도 일대의 대표 노두에서 야외 횡절관계를 근거하면 4개의 암맥들(UE-A, UE-C, UE-D, UE-E)로 구분되며, 방향성에 따라서는 북서 방향(UE-A 암맥), 북서 내지 서북서 방향(UE-C 암맥), 북동 방향(UE-D 및 UE-E 암맥)의 3개의 암맥군으로 나타난다. 이들 화강암 암맥들은 괴상의 중립~조립질의 흑운모 화강암으로 야외에서 관찰된 이들의 상대연령은 UE-A, UE-D (=UE-E), UE-C 순으로 젊어진다. 또한 암맥들의 기하학적 분석으로부터 UEA 및 UE-C 암맥은 대략 북동-남서 방향의 최소수평응력장 하에서 관입한 것으로 판단된다. 주원소 분석에 의한 SiO2 평균 함량에서 비교적 낮은 값을 보인 UE-A 암맥은 다른 암맥들보다 초기 마그마 분화의 산물임을 지시하여 암맥들의 상대연령과도 부합한다. SHRIMP 저어콘 U-Pb 연대측정으로부터 구한 암맥별 206Pb/238U 누적평균연령은 각각 약 167 Ma (UE-A), 164 Ma (UE-C), 167 Ma (UE-D), 167 Ma (UE-E)로 UE-A, UE-D, UE-E 암맥들은 매우 유사한 연령을 보이며 이들 암맥 중 가장 세립인 UE-C 암맥은 가장 젊은 연령을 나타내어 야외에서 관찰한 상호 횡절관계에 의한 상 대연령과 주원소 분석 결과와도 일치한다. 따라서 연구지역의 화강암 암맥들은 중생대 중기 쥐라기(약 167 Ma와 164 Ma)에 짧은 시간 간격을 두고 다양한 화강암질 마그마가 관입한 결과이며, 이들 관입 시기는 지리적으로 중기 쥐라기 암체들이 널리 분포하고 있는 경기육괴의 심성암체들과 일치하는 연령이다. 따라서 연구지역의 화강암 암맥군은 지구조 적으로 쥐라기 동안 섭입하는 해양판의 얕아지는 섭입각과 함께 북서 방향으로 이동하는 화성활동의 결과로 형성되었 음을 의미한다.
본 연구는 원예용 상토:마사토:재사용 암면을 100:0:0(대조 구), 80:0:20(M1), 60:30:10(M2), 40:30:30(M3), 30:40:30 (M4) 및 0:50:50(M5)의 비율(v:v:v)로 혼합한 후 상토의 물 리∙화학성과 ‘설향’ 딸기 자묘의 생육에 미치는 영향을 알아보 기 위하여 수행하였다. 상토의 물리적 측면에서는 통계적 차 이가 인정되었으며 용적밀도 및 입자밀도는 원예용 상토가 대 부분인 대조구와 M1에서 낮았으나, 재활용 암면과 마사토의 혼합비율이 높았던 M3, M4, M5에서 용적밀도와 입자밀도가 높았다. 유효수분과 완충수분에서도 비슷한 경향을 보였다. 반면 공극률과 기상률은 대조구와 M1에서 높았고 M3, M4, M5에서 낮았다. 치환성 양이온(K, Ca, Na, Mg)과 염기치환 용량(CEC)은 대조구와 M1에서 높았으며 M1, M3, M4, M5 에서 낮았다. ‘설향’ 자묘를 재배한 결과, 초장은 M2에서32.1cm로 길었고 M4에서 28.4cm로 작았으나 자묘의 생육지 표인 크라운 직경으로 판단한다면 모든 배지에서 11.23- 12.03mm로 형성되어 자묘의 생육에 적합하다고 생각된다. 지상부, 지하부의 생체중과 건물중은 유의한 차이가 없었다. 생육 결과를 종합하였을 때, 일정 비율의 재사용 암면과 마사 토를 혼합하여도 원예용 상토만을 사용한 것과 동일한 수준의 생육을 나타내었으나, 재활용 암면과 마사토를 적정 비율로 혼합하였을 때, 공극률, 기상률 등 물리성이 개선되어 관수관 리에 유리할 것으로 판단된다.
Various radionuclides are released and contaminate soils by the nuclear accidents, nuclear tests and disposal of radioactive waste. Among radionuclides, 137Cs is a harmful radioactive element that emits high-energy β particles and γ rays with a half-life of 30.2 years. 137Cs is difficult to extract because it is fixed to soil particles. For the volume reduction technology development of contaminated soil, this study tried to evaluate the irreversible Cs adsorption capacity of granite-originated soil. The soil sample used in the study was collected from C horizon of the soil developed in Mesozoic mica granite. The soil texture, mineralogy, organic content, pH, EC, cation exchange capacity (CEC), water-soluble cation and anion content of the soil samples were determined. A kinetic adsorption experiment and an isotherm adsorption experiment were performed to understand the overall Cs adsorption characteristics using 133Cs. The desorption of Cs by 0.1 mM KCl was also tested for the sample spiked with 133Cs and 137Cs. The soil sample showed a pH of 6.73, EC of 24.50 μS cm-1, and CEC of 1.34 cmolc kg-1, organic matter of 0.53% and sandy loam in texture. Quartz, feldspar and mica were identified as the major mineral components of bulk sample. The clay fraction consists of mica, hydroxyl-interlayer vermiculite (HIV), vermiculite and kaolinite. In the kinetic adsorption experiment, the Cs adsorption showed fast adsorption rates at the initial stage (6 hours) regardless of the 133Cs concentration, and the adsorption equilibrium state was reached after 48 hours. It was the most suitable for the pseudo second-order model. The 133Cs adsorption increased nonlinearly from low to high concentration, which was well match with the dual site Langmuir model. As a result of the desorption experiment, desorption was not performed up to 1.1 mg kg-1 in the presence of competitive ions K+, which is about 0.035% of CEC calculated by the isotherm model. The adsorption of Cs was controlled by frayed edge sites (FES) at a low concentrations and by basal sites or interlayer sites at a high concentration. Irreversible Cs fixation of by FES may be contributed by mainly weathered mica, and when these minerals are separated from the granite origin soil, the possibility of reducing the contamination concentration and volume of radioactive soil waste can be expected.
In this study, we evaluated fracture filling minerals and aperture distribution along the fracture surfaces under the controlled conditions. The fractured granite block which has a single natural fracture of 1 m scale was sampled in a domestic quarry (Iksan), which groundwater had been flowed through. This rock has an interconnected porosity of 0.36 with the specific gravity of 2.57. The experimental setup with the granite block with dimensions of 100×60×60 (cm). The fracture is sealed with rock silicone rubbers when it intersects the outer surfaces of the block and the outer surfaces are coated with the silicone to prevent loss of water by evaporation. Nine boreholes were drilled of orthogonal direction at the fracture surface. A flow of de-ionized water through the fracture between pairs of boreholes was initiated and the pressure required to maintain a steady flow was measured. In additions, fracture filling minerals were sampled and examined by mineralogical and chemical analyses. There are phyllosilicate minerals such as illite, kaolinite, and chlorite including calcite, which are fracture filling minerals. The illite and kaolinite usually coexist in the fracture, where their content ratio is different according to which mineral is predominant. For the evaluation of fracture, surface was divided into an imaginary matrix of 20×20 sub-squares as schematically. The calculated results are expressed as a two dimensional contour and a three dimensional surface plot for the aperture distribution in the fracture. The aperture value is distributed between 0.075 and 0.114 mm and the mean aperture value is 0.082 mm. The fracture volume is about 49 ml. These results will be very useful for the evaluation of environmental factor affecting the nuclides migration and retardation.
The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10–250 nm and 33–64 μg·L−1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.
The geological disposal of spent nuclear fuel is one of the important problems to be solved worldwide. For the safety of the geological disposal, disposal facility is recommended to be constructed in the deep reducing environment of host rocks. As host rocks, rock salt, argillaceous (clay) rock, and crystalline rock have been considered as stable geological formations in various countries. Although various studies have been conducted on crystalline rocks in Korea, there are still few studies on hydrogeochemical evolution in the deep and reducing environment related to the disposal of spent nuclear fuel. Therefore, this study was conducted to identify hydrogeochemical evolution process in granite aquifer which can affect the stability of disposal facility. Groundwater samples for isotope and chemical analysis were collected quarterly adjacent to KURT (KAERI Underground Research Tunnel). As the depth increased, the groundwater changed from Ca-HCO3 type to Na-HCO3 type under the influence of silicate mineral weathering, and the fluorine concentration increased due to the dissolution of fluorine-bearing minerals. However, hydrogeochemical evolution according to the depth was not observed in some wells because of a hydraulic connection through the fracture zone. In addition, the behavior of nitrate and redox-sensitive metals (Fe, Mn, U, Mo) in groundwater was clearly different in the redox condition. Considering these hydrogeochemical processes and hydrogeological factors, a conceptual model of granite aquifers in and around KURT was established. The results of this study will be used as basic data to understand the hydrogeochemical processes and to evaluate and predict the behavior of radionuclides in granite aquifer system.
The deep geological repository consisting of a multi-barrier system (engineered and natural barriers) is generally designed to isolate the high-level radioactive waste. The natural barrier is outermost portion to secure safety of the disposal. Crystalline rocks are considered for potential geological repository media to retard and inhibit the migration of radionuclides when the radionuclides leak from the canister and break through the engineered barrier. Sorption and diffusion processes play a major role in retardation of the radionuclides in deep underground environment. In order to evaluate the migration of radionuclides in the safety assessment or geochemical modelling, distribution coefficient and diffusivity of radionuclides are required as input data. In this study, we performed mineralogical and geochemical analysis for a crystalline rock (e.g., granite) to use the sorption and diffusion experiment. The fresh rock samples are obtained from a deep core samples (DB-2) drilled up to 1 km from the surface at KURT (KAERI Underground Research Tunnel) site. For the optical and microscopic examination, thin sections of the rock sample were provided. The rock samples were crushed into powder size to analyze major and trace elements of the whole-rock aliquots. The powdered specimens also used for mineral identification and measurement of specific surface area. The major constituent minerals of the granite are plagioclase, quartz, and K-feldspar and the minor minerals are phlogopite, biotite, and chlorite. According to the results of geochemical analysis, the granite specimens generally contain more than 70wt% of SiO2 and 8wt% of total alkali oxides (Na2O + K2O). The trace elements normalized to primitive mantle compositions show positive Cs, Rb, U, K, and Pb anomalies and negative Nb and Ti anomalies. The rock samples have an average density of 2.62 g·cm−3 and an average porosity of 0.222%. The crushed samples represent the specific surface area of 0.2087 m2·g−1 for the 75–150 μm fraction and 0.1616 m2·g−1 for the 150–300 μm fraction by BET method, respectively. The granite specimens will be used for the sorption and diffusion experiments to evaluate the radionuclides’ geochemical behaviors. The mineralogical and geochemical properties provided in this study can be useful in understanding the sorption and diffusion processes of significant radionuclides under the geological disposal environments.
Safe geological disposal of spent nuclear fuel (SNF) requires knowledge of the deep hydrochemical characteristics of the repository site. Here, we conducted a set of deep hydrochemical investigations using a 750-m borehole drilled in a model granite system in Wonju, South Korea. A closed investigation system consisting of a double-packer, Waterra pump, flow cell, and water-quality measurement unit was used for in situ water quality measurements and subsequent groundwater sampling. We managed the drilling water labeled with a fluorescein dye using a recycling system that reuses the water discharged from the borehole. We selected the test depths based on the dye concentrations, outflow water quality parameters, borehole logging, and visual inspection of the rock cores. The groundwater pumped up to the surface flowed into the flow cell, where the in situ water quality parameters were measured, and it was then collected for further laboratory measurements. Atmospheric contact was minimized during the entire process. Before hydrochemical measurements and sample collection, pumping was performed to purge the remnant drilling water. This study on a model borehole can serve as a reference for the future development of deep hydrochemical investigation procedures and techniques for siting processes of SNF repositories.
Evaluating the quantitative damage to rocks through acoustic emission (AE) has become a research focus. Most studies mainly used one or two AE parameters to evaluate the degree of damage, but several AE parameters have been rarely used. In this study, several data-driven models were employed to reflect the combined features of AE parameters. Through uniaxial compression tests, we obtained mechanical and AE-signal data for five granite specimens. The maximum amplitude, hits, counts, rise time, absolute energy, and initiation frequency expressed as the cumulative value were selected as input parameters. The result showed that gradient boosting (GB) was the best model among the support vector regression methods. When GB was applied to the testing data, the root-mean-square error and R between the predicted and actual values were 0.96 and 0.077, respectively. A parameter analysis was performed to capture the parameter significance. The result showed that cumulative absolute energy was the main parameter for damage prediction. Thus, AE has practical applicability in predicting rock damage without conducting mechanical tests. Based on the results, this study will be useful for monitoring the near-field rock mass of nuclear waste repository.