Bentonite is a promising buffer material for high-level radioactive waste (HLW) disposal due to the high nuclides sorption capacity and swelling property. However, bentonite has the potential to generate colloid particles, with small particle sizes less than 1,000 nm when in contact with groundwater. The bentonite colloids easily form pseudo-colloid with the released nuclides and migrate through the water-conducting rock to the biosphere. Therefore, understanding the generation and migration of bentonite colloids is crucial in assessing the safety of the HLW repository. In this study, an artificial fracture system was prepared to investigate colloid release from compacted bentonite. A 250 mm diameter acrylic artificial fracture system was used, with 30 mm of compacted calcium bentonite installed. Artificial groundwater flow was injected into the system at a flow rate of 250 μL/h, and every 6 mL of leachate was collected by a fraction collector. A film-type pressure sensor was equipped to monitor the swelling pressure, and the swelling was observed using a digital microscope. The results indicate that the compacted bentonite formed a mineral ring originating from the swelling of the bentonite, and the end of the ring generated colloid particles due to chemical erosion. Although the release rate of colloids increased with increasing flow rate, the colloid ratio depended on the low ionic strength of the injected artificial groundwater. This work contributes to the understanding of the chemical erosion and colloid release mechanism of compacted bentonite.