The homogeneity of radioactive spent ion exchange resins (IERs) distribution inside waste form is one of the important characteristics for acceptance of waste forms in long-term storage because heterogenous immobilization can lead to the poor structural stability of waste form. In this study, the homogeneity of metakaolin-based geopolymer waste form containing simulant IERs was evaluated using a laser-induced breakdown spectroscopy (LIBS) and statistical approach. The cation-anion mixed IERs (IRN150) were used to prepare the simulant spent IERs contaminated by non-radioactive Cs, Fe, Cr, Mn, Ni, Co, and Sr (0.44, 8.03, 6.22, 4.21, 4.66, 0.48, and 0.90 mg/g-dried IER, respectively). The K2SiO3 solution to metakaolin ratio was kept constant at 1.2 and spent IERs loading was 5wt%. For the synthesis of homogeneous geopolymer waste form, spent IERs were mixed with K2SiO3 solution and metakaolin first, and then the fresh mixture slurry was poured into plastic molds (diameter: 2.9 cm and height: 6.0 cm). The heterogeneous geopolymer waste form was also fabricated by stacking two kinds of mixtures (8wt% IERs loading in bottom and 2wt% in top) in one mold. Geopolymers were cured for 7d (1d at room temperature and 6d at 60°C). The hardened geopolymers were cut into top, middle, and bottom parts. The LIBS spectra and intensities for Cs were obtained from the top and bottom of each part. Cs was selected for target nuclide because of its good sensitivity for measurement. Shapiro-Wilk test was performed to determine the normality of LIBS data, and it revealed that data from the homogeneous sample is normal distribution (p-value = 0.9246, if p-value is higher than 0.05, it is considered as normal distribution). However, data from the heterogeneous sample showed abnormal distribution (p-value = 7.765×10-8). The coefficient of variation (CoV) was also calculated to examine the dispersion of data. It was 31.3% and 51.8% from homogeneous and heterogeneous samples, respectively. These results suggest that LIBS analysis and statistical approaches can be used to evaluate the homogeneity of waste forms for the acceptance criterion in repositories.