검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 19

        1.
        2023.11 구독 인증기관·개인회원 무료
        Radioactive iodine released from nuclear power plants has been recognized to pose significant risks and environmental hazards. In response to these challenges, extensive investigations into iodine sorbents have been conducted with a particular focus on the utilization of layered double hydroxides (LDH) as a promising candidate. Herein, we have focused on the investigation of LDH materials featuring diverse transition metals for their synthesis, with specific emphasis on CoAl LDH for its proficiency in removing iodine species, particularly IO3 –. Nevertheless, a comprehensive understanding of the removal mechanisms employed by these LDH materials remained elusive. Hence, the primary aim of this study is to elucidate the intricacies of the removal mechanisms through sorption tests, spectroscopic techniques, and theoretical chemistry analyses, subsequently contrasting the experimental outcomes with computational results. For the experimental facet, the synthesis of CoAl LDH was conducted utilizing 0.15 mol L−1 of Co(NO3)2⋅6H2O and 0.06 mol L−1 of Al(NO3)3⋅9H2O to attain a molar ratio (M2+:M3+) of 2.5:1. Subsequently, pH-dependent IO3 – sorption tests were carried out, coupled with X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy, facilitating the elucidation and discourse of the removal mechanism. The theoretical chemistry in this research harnessed ab initio molecular dynamics (AIMD) simulations for structural modeling, atomic density profiles, radial distribution function, analysis of oxide species, and MD-EXAFS spectrum analysis. In summary, this study aims to elucidate iodine removal mechanisms using diverse experimental results, culminating in the revelation that ion-exchange with NO3 – present in the interlayer predominates as the principal mechanism for IO3 – removal. Notably, a distinct spectral feature at approximately 33,190 eV emerged, defying identification through XANES and EXAFS analyses conducted under experimental conditions. In the AIMD simulations, meticulous scrutiny of individual iodine atoms uncovered the prevalence of I−O and I−O−H molecular species, marked by interactions between O and H atoms, with a coordination number of I−O = ~3. This transformation was primarily instigated by proton hopping. As a result, the comparative investigation reveals the dominance of IO3 – intercalation in the CoAl LDH material with the potential to undergo a transformation to the I−O−H molecule upon interaction with protons.
        2.
        2023.05 구독 인증기관·개인회원 무료
        The soils contaminated with radionuclides such as Cs-137 and Sr-90 should be solidified using a binder matrix, because radioactively contaminated soils pose environmental concerns and human health problems. Ordinary Portland cement has been widely used to solidify various radioactive wastes due to its low cost and simple process. In this study, simulant soil waste was solidified using cement waste form. The soils were collected around ‘Kori Nuclear Power Plant Unit 1’ and they were contaminated with the prepared simulant liquid waste containing Fe, Cr, Cs, Ni, Co, and Mn. The water-to-dry ingredients (W/D) ratio of cement waste form was 0.40. The cement paste was poured into a cubic mold (5×5×5 cm) and then cured for 28 days at room temperature. The 28-day compressive strength, water immersion, and EPA1311-toxicity characteristic leaching procedure (TCLP) tests were performed to evaluate the structural stability of cement waste form. The compressive strength was not proportional to soil waste loading, and the lowest compressive strength (4±0.1 MPa) was achieved in cement waste form containing 50wt% soil waste. After the water immersion test for 90 days, the compressive strength of cement waste form with 50wt% soil waste increased to 7.5±0.6 MPa, meeting the waste form acceptance criteria in the repository. It is believed that long-term water immersion test contributed to the additional curing and hydration reaction, resulting in the enhanced compressive strength. As a result of the TCLP test, the released amount of As, Ba, Cd, Cr, Pb, Se, Co, Cs, and Sr was less than the domestic and international standards. These results imply that cement waste form can be a promising candidate for the solidification of radioactive soil wastes.
        3.
        2023.05 구독 인증기관·개인회원 무료
        The homogeneity of radioactive spent ion exchange resins (IERs) distribution inside waste form is one of the important characteristics for acceptance of waste forms in long-term storage because heterogenous immobilization can lead to the poor structural stability of waste form. In this study, the homogeneity of metakaolin-based geopolymer waste form containing simulant IERs was evaluated using a laser-induced breakdown spectroscopy (LIBS) and statistical approach. The cation-anion mixed IERs (IRN150) were used to prepare the simulant spent IERs contaminated by non-radioactive Cs, Fe, Cr, Mn, Ni, Co, and Sr (0.44, 8.03, 6.22, 4.21, 4.66, 0.48, and 0.90 mg/g-dried IER, respectively). The K2SiO3 solution to metakaolin ratio was kept constant at 1.2 and spent IERs loading was 5wt%. For the synthesis of homogeneous geopolymer waste form, spent IERs were mixed with K2SiO3 solution and metakaolin first, and then the fresh mixture slurry was poured into plastic molds (diameter: 2.9 cm and height: 6.0 cm). The heterogeneous geopolymer waste form was also fabricated by stacking two kinds of mixtures (8wt% IERs loading in bottom and 2wt% in top) in one mold. Geopolymers were cured for 7d (1d at room temperature and 6d at 60°C). The hardened geopolymers were cut into top, middle, and bottom parts. The LIBS spectra and intensities for Cs were obtained from the top and bottom of each part. Cs was selected for target nuclide because of its good sensitivity for measurement. Shapiro-Wilk test was performed to determine the normality of LIBS data, and it revealed that data from the homogeneous sample is normal distribution (p-value = 0.9246, if p-value is higher than 0.05, it is considered as normal distribution). However, data from the heterogeneous sample showed abnormal distribution (p-value = 7.765×10-8). The coefficient of variation (CoV) was also calculated to examine the dispersion of data. It was 31.3% and 51.8% from homogeneous and heterogeneous samples, respectively. These results suggest that LIBS analysis and statistical approaches can be used to evaluate the homogeneity of waste forms for the acceptance criterion in repositories.
        4.
        2022.05 구독 인증기관·개인회원 무료
        Mechanism and kinetics of Rhenium complexes as a surrogate of Technetium-99 (99Tc) is worthy of study from radioactive waste safe disposal perspective. Re(IV)-EDTA was synthesized via the reduction of Re(VII) with Sn(II) in the presence of Ethylenediaminetetracetic acid (EDTA). The Re(IV)-EDTA was then degraded by H2O2 (7–30%) at pH of 3–11 in ionic strength I = 0–2 M solution. The Re- EDTA was observed to degrade more rapidly at pH of ≤ 3–4 than one of ≥ 10–11 and remained stable at pH = 7–9. At a low acidic pH, the complex degradation process was facilitated by protonation and corresponded to the exponential model (y = k. e–nt). In contrast, at an alkaline pH, the degradation was facilitated OH– complexation with Re(IV) and corresponded to a linear model (y = –mt + C). Complex degradation followed the zero-order rate kinetics for the H+ and Re-EDTA parameters, apart from a pH of 3, for which degradation was a better fit to first order kinetics. A higher Re(IV)-EDTA stability at a pH of 7–9 demonstrated that Re(IV)-EDTA (or 99Tc(IV)-EDTA) tends to be more persistent in natural environmental conditions.
        5.
        2022.05 구독 인증기관·개인회원 무료
        Immobilization of radioactive borate waste containing a high boron concentration using cement waste form has been challenged because the soluble borate phase such as boric acid reacts with calcium compounds, hindering the hydration reaction in cement waste form. Metakaolin-based geopolymer waste form which has a pure aluminosilicate system without calcium can be a promising alternative for the cement; however, secondary B-O-Si networks are formed by a reaction between borate and silicate, resulting in poor mechanical characteristics such as low compressive strength and final setting retardation. Thus, it is important to optimize the Si/Al molar ratio and curing temperature which are critical parameters of geopolymer waste form to increase borate waste loading and enhance the durability of geopolymer. Here, metakaolin-based geopolymer waste form to immobilize simulant radioactive borate waste was fabricated by varying the Si/Al molar ratio and curing temperature. The 7 days-compressive strength results reveals that the Si/Al molar ratio of 1.4 and curing at 60°C is advantageous to achieving high waste loading (30wt%). In addition, geopolymer waste forms with the highest borate waste loading exceeded the 3.445 MPa after the waste form acceptance criteria such as thermal cycling, gamma irradiation, and water immersion tests. The leachability index of boron was 7.56 and the controlling leaching mechanism was diffusion. The thermal cycling and gamma irradiation did not significantly change the geopolymer structure. The physically incorporated borate waste was leached out from geopolymer waste form during leaching and water immersion tests. Considering these results, metakaolin-based geopolymer waste form with a low Si/Al ratio is a promising candidate for borate waste immobilization, which has been difficult using cement.
        8.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silver tellurite glasses with melting temperature of approximately 700°C were developed to immobilize 129I wastes. Longterm dissolution tests in 0.1 M acetic acid and disposability assessment were conducted to evaluate sustainability of the glasses. Leaching rate of Te, Bi and I from the glasses decreased for up to 16 d, then remained stable afterwards. On the contrary, tens to tens of thousands of times more of Ag was leached in comparison to the other elements; additionally, Ag leached continuously for all 128 d of the test owing to the exchange of Ag+ and H+ ions between the glasses and solution. The I leached much lower than those of other elements even though it leached ~10 times more in 0.1 M acetic acid than in deionized water. Some TeO4 units in the glass network were transformed to TeO3 by ion exchange and hydrolysis. These silver tellurite glasses met all waste acceptance criteria for disposal in Korea.
        4,000원
        9.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Two waste forms, namely cement and geopolymer, were investigated and tested in this study to solidify the corrosive sludge generated from the surface and precipitates of the tubes of steam generators in nuclear power plants. The compressive strength of the cement waste form cured for 28 days was inversely proportional to waste loading (24.4 MPa for 0wt% to 2.7 MPa for 60wt%). The corrosive sludge absorbed the free water in the hydration reaction to decrease the cementation reaction. When the corrosive sludge waste loading increased to 60wt%, the cement waste form showed decreased compressive strength (2.7 MPa), which did not satisfy the acceptance criteria of the repository (3.45 MPa). Meanwhile, the compressive strength of the geopolymer waste form cured for 7 days was proportional to waste loading (23.6 MPa for 0wt% to 31.9 MPa for 40wt%). The corrosive sludge absorbed the free water in the geopolymer when the water content decreased, such that a compact geopolymer structure could be obtained. Consequently, the geopolymer waste forms generally showed higher compressive strengths than cement waste forms.
        4,800원
        17.
        2018.04 구독 인증기관·개인회원 무료
        In recent decades, introduction of the alien plant pests into Korea was dramatically increased and the role of plant quarantine became more important than ever. At the same time, early detection of the introduced population of the alien pests is critical for protection of their spread. However, continuous monitoring for their distribution or spread has not been performed yet in Korea. Present monitoring systems in Korea is not unified but sectored according to three institutes. There are some limitations in managing human resources, executing budgets, and collecting information among them, resuling in delayed responses to the introduced alien pests. Our study focused on 1) constructing nation-wide continuous monitoring system, 2) developing a decision flow chart for evaluating risks, 3) performing the benefits and costs analysis. Continuous monitoring will clarify overall distribution of alien pests, support government’s quarantine negotiation, and enable early detection of alien pests. Furthermore, the system will provide scientific data management and early responses to invasion of alien pests.