간행물

방사성폐기물학회지 KCI 등재 SCOPUS Journal of the Korean Radioactive Waste Society

권호리스트/논문검색
이 간행물 논문 검색

권호

Volume 18 Number 4 (2020년 12월) 10

Invited Paper

1.
2020.12 구독 인증기관 무료, 개인회원 유료
This study provides an assessment on a proposed method for separation of cesium, strontium, and barium using electrochemical reduction at a liquid bismuth cathode in LiCl-KCl eutectic salt, investigated via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS). CV studies were performed at temperatures of 723-823 K and concentrations of the target species up to 4.0wt%. Redox reactions occurring during potential sweeps were observed. Concentration of BaCl2 in the salt did not seem to influence the diffusivity in the studied concentration range up to 4.0wt%. The presence of strontium in the system affected the redox reaction of lithium; however, there were no distinguishable redox peaks that could be measured. Impedance spectra obtained from EIS methods were used to calculate the exchange current densities of the electroactive active redox couple at the bismuth cathode. Results show the rate-controlling step in deposition to be the mass transport of Cs+ ions from the bulk salt to the cathode surface layer. Results from SEM-EDS suggest that Cs-Bi and Sr-Bi intermetallics from LiCl-KCl salt are not thermodynamically favorable.
5,100원

Research Paper

2.
2020.12 구독 인증기관 무료, 개인회원 유료
Numerical model was developed that simulates radionuclide (3 H and 14C) transport modeling at the 2nd phase facility at the Wolsong LILW Disposal Center. Four scenarios were simulated with different assumptions about the integrity of the components of the barrier system. For the design case, the multi-barrier system was shown to be effective in diverting infiltration water around the vaults containing radioactive waste. Nevertheless, the volatile radionuclide 14C migrates outside the containment system and through the unsaturated zone, driven by gas diffusion. 3 H is largely contained within the vaults where it decays, with small amounts being flushed out in the liquid state. Various scenarios were examined in which the integrity of the cover barrier system or that of the concrete were compromised. In the absence of any engineered barriers, 3 H is washed out to the water table within the first 20 years. The release of 14C by gas diffusion is suppressed if percolation fluxes through the facility are high after a cover failure. However, the high fluxes lead to advective transport of 14C dissolved in the liquid state. The concrete container is an effective barrier, with approximately the same effectiveness as the cover.
5,100원
3.
2020.12 구독 인증기관 무료, 개인회원 유료
In this study, extraction of uranium(VI) from an aqueous nitric acid solution was investigated using tri-n-butyl phosphate (TBP) as an extractant in an ionic liquid, 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide ([Cnmim][Tf2N]). The distribution ratio of U(VI) in 1.1 M TBP/[Cnmim][Tf2N] was significantly high when the concentration of nitric acid was low. The value of the distribution ratio decreased as the concentration of the nitric acid increased at lower acidities, and then increased with a nitric acid concentration of up to 8 M. This can be attributed to the different extraction mechanisms of U(VI) based on nitric acid concentrations. Thus, a cation exchange at low acidity levels and an ion-pair extraction at high acidity levels were suggested as the extraction mechanism of U(VI) in the TBP/[Cnmim][Tf2N] system.
4,000원
4.
2020.12 구독 인증기관 무료, 개인회원 유료
Two waste forms, namely cement and geopolymer, were investigated and tested in this study to solidify the corrosive sludge generated from the surface and precipitates of the tubes of steam generators in nuclear power plants. The compressive strength of the cement waste form cured for 28 days was inversely proportional to waste loading (24.4 MPa for 0wt% to 2.7 MPa for 60wt%). The corrosive sludge absorbed the free water in the hydration reaction to decrease the cementation reaction. When the corrosive sludge waste loading increased to 60wt%, the cement waste form showed decreased compressive strength (2.7 MPa), which did not satisfy the acceptance criteria of the repository (3.45 MPa). Meanwhile, the compressive strength of the geopolymer waste form cured for 7 days was proportional to waste loading (23.6 MPa for 0wt% to 31.9 MPa for 40wt%). The corrosive sludge absorbed the free water in the geopolymer when the water content decreased, such that a compact geopolymer structure could be obtained. Consequently, the geopolymer waste forms generally showed higher compressive strengths than cement waste forms.
4,800원
5.
2020.12 구독 인증기관 무료, 개인회원 유료
After nuclear power plants are permanently shut down and decommissioned, the remaining irradiated metal components such as stainless steel, carbon steel, and Inconel can be used as neutron absorber. This study investigates the possibility of reusing these metal components as neutron absorber materials, that is burnable poison. The absorption cross section of the irradiated metals did not lose their chemical properties and performance even if they were irradiated over 40-50 years in the NPPs. To examine the absorption capability of the waste metals, the lattice calculations of WH 17×17 fuel assembly were analyzed. From the results, Inconel-718 significantly hold-down fuel assembly excess reactivity compared to stainless steel 304 and carbon steel because Inconel-718 contains a small amount of boron nuclide. From the results, a 20wt% impurity of boron in irradiated Inconel-718 enhances the excess reactivity suppression. The application of irradiated Inconel-718 as a burnable absorber for SMR core was investigated. The irradiated Inconel-718 impurity with 20wt% of boron content can maintain and suppress the whole core reactivity. We emphasize that the irradiated metal components can be used as burnable absorber materials to control the reactivity of commercial reactor power and small modular reactors.
4,900원
6.
2020.12 구독 인증기관 무료, 개인회원 유료
In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most time-resolved laser fluorescence spectroscopy (TRLFS) studies. In this study, TRLFS and continuous-wave excitation–emission matrix spectroscopy are adopted to characterize the excitation properties of U(VI) surface species that interact with amorphous silica. The luminescence spectra of U(VI) measured from a silica suspension and silica sediment showed very similar spectral shapes with similar lifetime values. In contrast, the excitation spectra of U(VI) measured from these samples were significantly different. The results show that distinctive excitation maxima appeared at approximately 220 and 280 nm for the silica suspension and silica sediment, respectively.
4,300원
7.
2020.12 구독 인증기관 무료, 개인회원 유료
An important property of glass and ceramic solid waste forms is processability. Tellurite materials with low melting temperatures and high halite solubilities have potential as solid waste forms. Crystalline TiTe3O8 was synthesized through a solid-state reaction between stoichiometric amounts of TiO2 and TeO2 powder. The resultant TiTe3O8 crystal had a three-dimensional (3D) structure consisting of TiO6 octahedra and asymmetric TeO4 seesaw moiety groups. The melting temperature of the TiTe3O8 powder was 820℃, and the constituent TeO2 began to evaporate selectively from TiTe3O8 above around 840℃. The leaching rate, as determined using the modified American Society of Testing and Materials static leach test method, of Ti in the TiTe3O8 crystal was less than the order of 10-4 g·m-2·d-1 at 90℃ for durations of 14 d over a pH range of 2-12. The chemical durability of the TiTe3O8 crystal, even under highly acidic and alkaline conditions, was comparable to that of other well-known Ti-based solid waste forms.
4,000원
8.
2020.12 구독 인증기관 무료, 개인회원 유료
The radionuclide inventory in radioactive waste from nuclear power plants should be determined to secure the safety of final repositories. As an alternative to time-consuming, labor-intensive, and destructive radiochemical analysis, the indirect scaling factor (SF) method has been used to determine the concentrations of difficult-to-measure radionuclides. Despite its long history, the original SF methodology remains almost unchanged and now needs to be improved for advanced SF implementation. Intense public attention and interest have been strongly directed to the reliability of the procedures and data regarding repository safety since the first operation of the low- and intermediate-level radioactive waste disposal facility in Gyeongju, Korea. In this review, statistical methodologies for SF implementation are described and evaluated to achieve reasonable and advanced decision-making. The first part of this review begins with an overview of the current status of the scaling factor method and global experiences, including some specific statistical issues associated with SF implementation. In addition, this review aims to extend the applicability of SF to the characterization of large quantities of waste from the decommissioning of nuclear facilities.
5,500원

Technical Paper

9.
2020.12 구독 인증기관 무료, 개인회원 유료
Currently, radioactive waste for disposal has been restricted to low and intermediate level radioactive waste generated during operation of nuclear power plants, and these radioactive wastes were managed and disposed of the 200 L and 320 L of steel drums. However, it is expected that it will be difficult to manage a large amount of decommissioning waste of the Kori unit 1 with the existing drums and transportation containers. Accordingly, the KORAD is currently developing various and largesized containers for packaging, transportation, and disposal of decommissioning waste. In this study, the radiation exposure doses of workers and the public were evaluated using RADTRAN computational analysis code in case of the domestic onroad transportation of new package and transportation containers under development. The results were compared with the domestic annual dose limit. In addition, the sensitivity of the expected exposure dose according to the change in the leakage rate of radionuclides in the waste packaging was evaluated. As a result of the evaluation, it was confirmed that the exposure dose under normal and accident condition was less than the domestic annual exposure dose limit. However, in the case of a number of loading and unloading operations, working systems should be prepared to reduce the exposure of workers.
4,300원

Technical Note

10.
2020.12 구독 인증기관 무료, 개인회원 유료
Deionized water, methanol, and ethanol were investigated for their effectiveness at dissolving LiCl-KCl-UCl3 at 25, 35, and 50℃ using inductively coupled plasma mass spectrometry (ICP-MS) to study the concentration evolution of uranium and mass ratio evolutions of lithium and potassium in these solvents. A visualization experiment of the dissolution of the ternary salt in solvents was performed at 25℃ for 2 min to gain further understanding of the reactions. Aforementioned solvents were evaluated for their performance on removing the adhered ternary salt from uranium dendrites that were electrochemically separated in a molten LiCl-KCl-UCl3 electrolyte (500℃) using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Findings indicate that deionized water is best suited for dissolving the ternary salt and removing adhered salt from electrodeposits. The maximum uranium concentrations detected in deionized water, methanol, and ethanol for the different temperature conditions were 8.33, 5.67, 2.79 μg·L-1 for 25℃, 10.62, 5.73, 2.50 μg·L-1 for 35℃, and 11.55, 6.75, and 4.73 μg·L-1 for 50℃. ICP-MS analysis indicates that ethanol did not take up any KCl during dissolutions investigated. SEM-EDS analysis of ethanol washed uranium dendrites confirmed that KCl was still adhered to the surface. Saturation criteria is also proposed and utilized to approximate the state of saturation of the solvents used in the dissolution trials.
4,600원