간행물

방사성폐기물학회지 KCI 등재 SCOPUS Journal of the Korean Radioactive Waste Society

권호리스트/논문검색
이 간행물 논문 검색

권호

Volume 20 Number 3 (2022년 9월) 10

1.
2022.09 구독 인증기관 무료, 개인회원 유료
Molten salt consisting primarily of eutectic LiCl-KCl is currently being used in electrorefiners in the Fuel Conditioning Facility at Idaho National Laboratory. Options are currently being evaluated for storing this salt outside of the argon atmosphere hot cell. The hygroscopic nature of eutectic LiCl-KCl makes is susceptible to deliquescence in air followed by extreme corrosion of metallic cannisters. In this study, the effect of occluding the salt into a zeolite on water sorption/desorption was tested. Two zeolites were investigated: Na-Y and zeolite 4A. Na-Y was ineffective at occluding a high percentage of the salt at either 10 or 20wt% loading. Zeolite-4A was effective at occluding the salt with high efficiency at both loading levels. Weight gain in salt occluded zeolite-4A (SOZ) from water sorption at 20% relative humidity and 40℃ was 17wt% for 10% SOZ and 10wt% for 20% SOZ. In both cases, neither deliquescence nor corrosion occurred over a period of 31 days. After hydration, most of the water could be driven off by heating the hydrated salt occluded zeolite to 530℃. However, some HCl forms during dehydration due to salt hydrolysis. Over a wide range of temperatures (320–700℃) and ramp rates (5, 10, and 20℃ min−1), HCl formation was no more than 0.6% of the Cl− in the original salt.
4,000원
2.
2022.09 구독 인증기관 무료, 개인회원 유료
The buffer is a critical barrier component in an engineered barrier system, and its purpose is to prevent potential radionuclides from leaking out from a damaged canister by filling the void in the repository. No experimental parameters exist that can describe the buffer expansion phenomenon when Kyeongju bentonite, which is a buffer candidate material available in Korea, is exposed to groundwater. As conventional experiments to determine these parameters are time consuming and complicated, simple swelling pressure tests, numerical modeling, and machine learning are used in this study to obtain the parameters required to establish a numerical model that can simulate swelling. Swelling tests conducted using Kyeongju bentonite are emulated using the COMSOL Multiphysics numerical analysis tool. Relationships between the swelling phenomenon and mechanical parameters are determined via an artificial neural network. Subsequently, by inputting the swelling tests results into the network, the values for the mechanical parameters of Kyeongju bentonite are obtained. Sensitivity analysis is performed to identify the influential parameters. Results of the numerical analysis based on the identified mechanical parameters are consistent with the experimental values.
4,000원
3.
2022.09 구독 인증기관 무료, 개인회원 유료
The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10–250 nm and 33–64 μg·L−1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.
5,200원
4.
2022.09 구독 인증기관 무료, 개인회원 유료
The acoustic emission (AE) is proposed as a feasible method for the real-time monitoring of the structural damage evolution in concrete materials that are typically used in the storage of nuclear wastes. However, the characteristics of AE signals emitted from concrete structures subjected to various environmental conditions are poorly identified. Therefore, this study examines the AE characteristics of the concrete structures during uniaxial compression, where the storage temperature and immersion conditions of the concrete specimens varied from 15℃ to 75℃ and from completely dry to water-immersion, respectively. Compared with the dry specimens, the water-immersed specimens exhibited significantly reduced uniaxial compressive strengths by approximately 26%, total AE energy by approximately 90%, and max RA value by approximately 70%. As the treatment temperature increased, the strength and AE parameters, such as AE count, AE energy, and RA value, of the dry specimens increased; however, the temperature effect was only minimal for the immersed specimens. This study suggests that the AE technique can capture the mechanical damage evolution of concrete materials, but their AE characteristics can vary with respect to the storage conditions.
4,000원
5.
2022.09 구독 인증기관 무료, 개인회원 유료
60+ Years of nuclear power generation has led to a significant legacy of radioactively contaminated land at a number of nuclear licenced “mega sites” around the world. The safe management and remediation of these sites is key to ensuring there environmental stewardship in the long term. Bioremediation utilizes a variety of microbially mediated processes such as, enzymatically driven metal reduction or biominerialisation, to sequester radioactive contaminants from the subsurface limiting their migration through the geosphere. Additionally, some of these process can provide environmentally stable sinks for radioactive contaminants, through formation of highly insoluble mineral phases such as calcium phosphates and carbonates, which can incorporate a range of radionuclides into their structure. Bioremediation options have been considered and deployed in preference to conventional remediation techniques at a number of nuclear “mega” sites. Here, we review the applications of bioremediation technologies at three key nuclear licenced sites; Rifle and Hanford, USA and Sellafield, UK, in the remediation of radioactively contaminated land.
4,500원
6.
2022.09 구독 인증기관 무료, 개인회원 유료
The transport of radionuclides at oceanic scales can be assessed using a Lagrangian model. In this review an application of such a model to the Atlantic, Indian and Pacific oceans is described. The transport model, which is fed with water currents provided by global ocean circulation models, includes advection by three–dimensional currents, turbulent mixing, radioactive decay and adsorption/release of radionuclides between water and bed sediments. Adsorption/release processes are described by means of a dynamic model based upon kinetic transfer coefficients. A stochastic method is used to solve turbulent mixing, decay and water/sediment interactions. The main results of these oceanic radionuclide transport studies are summarized in this paper. Particularly, the potential leakage of 137Cs from dumped nuclear wastes in the north Atlantic region was studied. Furthermore, hypothetical accidents, similar in magnitude to the Fukushima accident, were simulated for nuclear power plants located around the Indian Ocean coastlines. Finally, the transport of radionuclides resulting from the release of stored water, which was used to cool reactors after the Fukushima accident, was analyzed in the Pacific Ocean.
5,200원
7.
2022.09 구독 인증기관 무료, 개인회원 유료
Major accidents at nuclear power plants generate huge amounts of radioactive waste in a short period of time over a wide area outside the plant boundary. Therefore, extraordinary efforts are required for safe management of the waste. A well-established remediation plan including radioactive waste management that is prepared in advance will minimize the impact on the public and environment. In Korea, however, only limited plans exist to systematically manage this type of off-site radioactive waste generating event. In this study, we developed basic strategies for off-site radioactive waste management based on recommendations from the IAEA (International Atomic Energy Agency) and NCRP (National Council on Radiation Protection and Measurements), experiences from the Fukushima Daiichi accident in Japan, and a review of the national radioactive waste management system in Korea. These strategies included the assignment of roles and responsibilities, development of management methodologies, securement of storage capacities, preparation for the use of existing infrastructure, assurance of information transparency, and establishment of cooperative measures with international organizations.
4,000원
8.
2022.09 구독 인증기관 무료, 개인회원 유료
Nuclear power plant decommissioning generates significant concrete waste, which is slightly contaminated, and expected to be classified as clearance concrete waste. Clearance concrete waste is generally crushed into rubble at the site or a satellite treatment facility for practical disposal purposes. During the process, workers are exposed to radiation from the nuclides in concrete waste. The treatment processes consist of concrete cutting/crushing, transportation, and loading/unloading. Workers’ radiation exposure during the process was systematically studied. A shielding package comprising a cylindrical and hexahedron structure was considered to reduce workers’ radiation exposure, and improved the treatment process’s efficiency. The shielding package’s effect on workers’ radiation exposure during the cutting and crushing process was also studied. The calculated annual radiation exposure of concrete treatment workers was below 1 mSv, which is the annual radiation exposure limit for members of the public. It was also found that workers involved in cutting and crushing were exposed the most.
4,000원
9.
2022.09 구독 인증기관 무료, 개인회원 유료
The safety of a KTC-360 transport cask, a large-capacity pressurized heavy-water reactor transport cask that transports CANDU spent nuclear fuel discharged from the reactor after burning in a pressurized heavy-water reactor, must be demonstrated under the normal transport and accident conditions specified under transport cask regulations. To confirm the thermal integrity of this cask under normal transport and accident conditions, high-temperature and fire tests were performed using a one-third slice model of an actual KTC-360 cask. The results revealed that the surface temperature of the cask was 62°C, indicating that such casks must be transported separately. The highest temperature of the CANDU spent nuclear fuel was predicted to be lower than the melting temperature of Zircaloy-4, which was the sheath material used. Therefore, if normal operating conditions are applied, the thermal integrity of a KTC-360 cask can be maintained under normal transport conditions. The fire test revealed that the maximum temperatures of the structural materials, stainless steel, and carbon steel were 446°C lower than the permitted maximum temperatures, proving the thermal integrity of the cask under fire accident conditions.
4,000원
10.
2022.09 구독 인증기관 무료, 개인회원 유료
Operating and decommissioning nuclear power plants generates radioactive waste. This radioactive waste can be categorized into several different levels, for example, low, intermediate, and high, according to the regulations. Currently, low and intermediate-level waste are stored in conventional 200-liter drums to be disposed. However, in Korea, the disposal of intermediate-level radioactive waste is virtually impossible as there are no available facilities. Furthermore, large-sized intermediate- level radioactive waste, such as reactor internals from decommissioning, need to be segmented into smaller sizes so they can be adequately stored in the conventional drums. This segmentation process requires additional costs and also produces secondary waste. Therefore, this paper suggests repurposing the no-longer-used spent nuclear fuel casks. The casks are larger in size than the conventional drums, thus requiring less segmentation of waste. Furthermore, the safety requirements of the spent nuclear fuel casks are severer than those of the drums. Hence, repurposed spent nuclear fuel casks could better address potential risks such as dropping, submerging, or a fire. In addition, the spent nuclear fuel casks need to be disposed in compliance with the regulations for low level radioactive waste. This cost may be avoided by repurposing the casks.
4,000원