한국원자력연구소에서는 고온의 용융염 매질 하에서 사용 후 핵연료를 환원시키는 차세대관리종합공정 연구를 수행 중에 있다. 추후 본 기술개발을 실증시험 하기 위해서는 방사선 차폐능이 확보된 핫셀이 필수적이며, 핫셀은 최대 1,385TBq의 방사능량에 대한 차폐 안전성을 가져야 한다. 최대 방사선원에 대한 핫셀의 차폐능을 확보하기 위하여, 본 연구에서는 실증시험 시 사용후핵연료부터 발생하는 중성자 및 감마선에 의한 선량률이 법적 허용선량치보다 낮게 유지되도록 핫셀의 차폐 설계에 대한 안전성을 평가하였다. QAD-CGGP 및 MCNP-4C 코드를 이용하여 핫셀 차폐체의 설계치에 대한 차폐 계산을 수행하였다. 작업구역에 대한 감마선 차폐계산 결과 QAD-CGGP 코드는 2.10, 2.97 mSv/h, MCNP-4C 코드는 1.60, 2.99 mSv/h 이었으며, 서비스 구역은 1.01, 7.88 mSv/h 로 평가되었다. 그리고 MCNP-4C코드를 이용하여 중성자에 의한 선량률을 계산한 결과, 중성자에 의한 선량률은 감마에 의한 선량률의 약 20% 이하치를 나타내었다. 따라서 선량률 대부분은 감마선에 의한 영향임을 알 수 있었다. 본 연구를 통하여 핫셀의 차폐 설계치가 작업구역의 선량 제한치 0.01 mSv/h 와 서비스 구역에서의 선량 제한치 0.15 mSv/h를 만족시키는 것을 확인할 수 있었다.
This study presents the thermal analyses of a spent fuel dry storage cask under normal and off-normal conditions. The environmental temperature is assumed to be 15 under the normal condition. The off-normal condition has an environmental temperature of 38 . An additional off-normal condition is considered as a partial blockage of the air inlet ducts. Two of the four air inlet ducts are assumed to be completely blocked. The significant thermal design feature of the storage cask is the air flow path used to remove the decay heat from the spent fuel. Natural circulation of the air inside the cask allows the concrete and fuel cladding temperatures to be maintained below the allowable values. The finite volume computational fluid dynamics code FLUENT was used for the thermal analysis. The maximum temperatures of the fuel rod and concrete overpack were lower than the allowable values under the normal and off-normal conditions.
To validate the previous conceptual design of cover system, construction of the engineered barrier test facility is completed and the performance tests of the disposal cover system are conducted. The disposal test facility is composed of the multi-purpose working space, the six test cells and the disposal information space for the PR center. The dedicated detection system measures the water content, the temperature, the matric potential of each cover layer and the accumulated water volume of lateral drainage. Short-term experiments on the disposal cover layer using the artificial rainfall system are implemented. The sand drainage layer shows the satisfactory performance as intended in the design stage. The artificial rainfall does not affect the temperature of cover layers. It is investigated that high water infiltration of the artificial rainfall changes the matric potential in each cover layer. This facility is expected to increase the public information about the national radioactive waste disposal program and the effort for the safety of the planned disposal facility.
Final disposal of radioactive waste generated from Nuclear Power Plant (NPP) requires the detailed information about the characteristics and the quantities of radionuclides in waste package. Most of these radionuclides are difficult to measure and expensive to assay. Thus it is suggested to the indirect method by which the concentration of the Difficult-to-Measure (DTM) nuclide is estimated using the correlations of concentration - it is called the scaling factor - between Easy-to-Measure (Key) nuclides and DTM nuclides with the measured concentration of the Key nuclide. In general, the scaling factor is determined by the log mean average (LMA) method and the regression method. However, these methods are inadequate to apply to fission product nuclides and some activation product nuclides such as 14 and 90 . In this study, the artificial neural network (ANN) method is suggested to improve the conventional SF determination methods - the LMA method and the regression method. The root mean squared errors (RMSE) of the ANN models are compared with those of the conventional SF determination models for 14 and 90 in two parts divided by a training part and a validation part. The SF determination models are arranged in the order of RMSEs as the following order: ANN model
원전 작업자 방사선량의 효과적인 저감을 위해서는 발전소 내에 축적된 작업자 피폭선량자료들을 분석하는 것이 반드시 필요하다. 자료의 분석을 통해, 발전소에서 수행되는 방사선작업들 중 반복적으로 고피폭을 유발하는 작업들을 파악하는 것이 필요하며, 본 연구에서는 이러한 반복성고피폭작업들을 도출하기 위한 방법론으로 백분위수 순위합 방법을 제안한다. 이는 비모수통계학 이론에 근거한 방법론으로, 본 연구에서는 이 방법을 이용하여 고리 3,4 호기 작업자 피폭선량 자료를 분석, 고피폭작업들을 도출하였다. 도출 결과는 통계적으로 검증되며, 그 결과 백분위수 순위합 방법의 효과 및 타당성을 입증하였다.
방사성핵종의 특성, 섭취형태 그리고 내부피폭 감시주기는 작업자의 방사성핵종 섭취량 및 내부피폭선량 평가 결과에 중요한 영향을 줄 수 있다. 따라서 방사성핵종이 흡입섭취 될 경우 섭취형태(급성 또는 만성) 및 내부피폭 감시주기에 따른 섭취량 평가 오차를 계산하였다. 섭취 핵종으로는 /I(Type F), Cs(Type F), U(Type M, Type S)를 고려하였고, 방사능입자크기(AMAD)는 1 와 5 를 고려하였다. 섭취형태에 따라 평가된 섭취량의 상대오차는 방사성핵종, 흡수형태 그리고 내부피폭 감시주기에 따라 달랐으나, 입자크기에 의한 영향은 거의 없었다. 섭취형태 가정에 따른 섭취량 평가 오차를 10% 미만으로 줄일 수 있는 내부피폭 최대감시주기는 /I(Type F)에 대해 60일, Cs(Type F)에 대해 180일, U(Type M)에 대해 90일, 그리고 U(Type S)에 대해 360일로 나타났다.
연구로 1,2호기 해체과정에서 발생되는 많은 양의 철재폐기물 중 자체처분대상 철재폐기물을 대상으로 재활용하는 경우에 대해서 피폭방사선량을 평가하고, 규제해제농도기준(안)을 도출하였다. 평가도구는 RESRAD-RECYCLE ver 3.06을 이용하여 ICRP60에서 제시하고 있는 유효선량 개념에 근거한 내부피폭 선량환산인자를 수정하였고, IAEA Safety Series 111-P-1.1 및 NUREG-1640을 적용하여 예상되는 최대개인선량 및 집단선량을 평가하였다. 0.4 Bq/g의 철재폐기물에 대한 RESRAD-RECYCLE 전산코드의 평가결과 개인최대선량 및 집단선량은 23.9 Sv/y, 0.11 manSv/y이다. 최종적인 핵종별 규제해제농도기준은 일반평가방법과 세부평가결과를 종합하여 가장 보수적인 평가결과를 추출하여 결정하였다. 그 결과 , C 핵종에 대한 규제해제농도준위는 1.14 Bq/g미만이 되어야 국내 원자력법에서 정하고 있는 처분제한치(최대개인선량 : 10 Sv/y, 집단선량 : 1 manSv/y)를 만족할 수 있다.
고리 1호기 원자로압력용기의 중성자속과 방사화생성물 재고량을 계산하기 위하여 DORT 코드와 ORIGEN2 코드를 사용하였다. DORT 코드를 이용해 중성자속을 계산하기 위하여 노심을 중앙부터 원자로압력용기까지 방위각 방향으로 94 mesh로 분할하였다. 원자로압력용기 영역의 중성자속을 이용하여 주요 핵종의 단면적을 재계산하였다. 원자로압력용기의 경우, Fe, Co, Ni 및 Ni의 핵종이 총 방사능의 약 95%를 차지하였으며, 해체 후 50년 이상 냉각후의 총 방사능은 정지시점과 비교하여 약 0.2% 이하로 감소하는 것으로 평가되었다. 총 중량이 210 ton인 원자로압력용기의 총 방사능은 5.25GBq이었다. ORIGEN2 계산 결과를 검증하기 위하여 고리 1호기 원자로압력용기의 계산값과 실측값에 대한 비교 검증을 수행하였으며, 그 결과는 서로 일치함을 확인할 수 있었다.
원전에서 발생된 중저준위 방사성 폐기물의 경우 처분장으로 이송되기 이전에 드럼에 대한 세부적인 정보 특히 핵종 재고량에 대한 평가가 수행되어야 한다. 그러나 드럼처리된 방사성폐기물의 경우 평가 대상 핵종 농도에 대한 예측이 어려운 것이 일반적이다. 따라서 이를 극복하고자 직접측정이 어려운 경우 척도인자 방법을 활용하고 있다. 국내의 경우 1996년부터 고리원전에서 척도인자 개념이 적용된 핵종분석장치를 운영해오고 있다. 그러나 고리원전에 적용된 척도인자의 경우 많은 개선의 여지가 남겨져 있다. 따라서 현재 척도인자의 향상을 위한 연구가 진행 중에 있다. 본 논문에서는 연구의 범위에 대한 개략적인 소개와 핵종 재고량 평가 방법 중 보다 신뢰할 수 있는 평가 방법을 찾고자 통계적인 척도인자 평가 방법을 비교 평가했으며 이를 통해 고리원전에 사용된 산술평균 방법을 기하평균 방법으로 바꾸는 것이 예측의 정확성을 향상시킬 수 있을 뿐만 아니라 드럼내 핵종 재고량의 과대평가를 막고 합리적인 보수성을 유지할 수 있음을 알수 있었다.