Concrete radioactive waste is divided into surface-contaminated concrete and activated concrete, and although the generation rate varies depending on the operating conditions of the nuclear power plant, it is reported that the amount of surface-contaminated concrete generated is greater. It is reported in the ‘US-NRC Inventory Report’ that 99% of radionuclides in surface-contaminated concrete are distributed within 1 mm of the surface. Since concrete radioactive waste accounts for a large amount of generation after metal radioactive waste, it is necessary to reduce the amount of radioactive waste disposal by applying appropriate treatment techniques to surface-contaminated concrete. In this study, a similar contamination environment work space with the size of 5.4 (W) × 3.6 (L) × 2.5 (H) [m] in which concrete specimens can be fixed on the wall and floor was established. And an integrated decontamination equipment was verified the automation performance for ‘location accuracy’, ‘radioactive contamination level measurement’ and ‘concrete surface laser scabbling’. It was confirmed that the average was 8.3 [mm] in the evaluation of the ‘location accuracy’ for the remote control and movement of the integrated decontamination equipment. For performance verification of ‘radioactive contamination level measurement’ and ‘laser scabbling’, it were used that size of 30×30×8 [cm] ordinary concrete specimens and concrete radioactively contaminated with Co-60 below the regulatory exemption concentration. ‘Radioactive contamination level measurement’ is measured as much as the set range, divied and display the measured values in different colors on the map of the control program. Ordinary concrete specimens are 0.066~0.089 μ Sv/hr, and contaminated concrete specimens are 0.107~0.121 μ Sv/hr, and it was confirmed that they are expressed in different colors on the map. For ‘laser scabbling’, the performance according to the laser scabbling speed and reproducibility with ordinary concrete specimens was verified. As a result, a weight change of up to 1.48 kg was confirmed. Contaminated concrete specimens were subjected to a direct method using a surface contamination detector and an indirect method using a smear paper to measure surface contamination before and after scabbling, and the debris generated after scabbling was analyzed using HPGe.