논문 상세보기

Evaluation of Nuclear Proliferation Risk Through Nuclear Material Attractiveness in Nuclear Fuel Cycle

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430934
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

As the demand for nuclear power increases as a means to achieve carbon neutrality, concerns about nuclear proliferation have also grown. Consequently, significant researches have conducted to enhance nuclear non-proliferation resistance. Among these research, nuclear material attractiveness is a methodology used to evaluate how appealing a particular material is for potential use in nuclear weapons, based on the characteristics of that material. Existing nuclear material attractiveness assessments focused on materials like U, Pu, and TRU, which could be directly used in the production of nuclear weapons. However, these assessments did not consider how the properties of nuclear materials change throughout the nuclear fuel cycle, with each facility process. This study assumed a scenario of the nuclear fuel cycle of graphite reduction reactors and analyzed including enrichment facilities and PUREX. This study used the FOM (Figure-Of-Merit) method developed by LANL (Los Alamos National Laboratory) for evaluating the nuclear material attractiveness. The FOM formula consists of three parameters such as critical mass, heat content, and dose The critical mass of targe materials and the dose evaluation were conducted using the Monte Carlo N-Particle code. The heat content was calculated using the ORIGEN code embedded in the Scale code. In particular, if U-238 is dominant in the facility’s materials, such as mining and refining facilities, and critical mass evaluation is unpractical. Therefore, 1SQ (Significant Quantity) of that uranium was assumed as the critical mass value for the FOM evaluation, even though 1SQ is not identical to the critical mass As a result of this study, the attractiveness of Pu produced by PUREX among all nuclear fuel cycle facilities was 2.7616, which was the most attractive to be diverted to nuclear weapons. Through this study, it was shown that the proliferation risk of the nuclear facilities in the nuclear fuel cycle and risk of diversion among those facilities.

저자
  • Dan Woo Ko(Kyung Hee University)
  • Ji Yeong Kim(Kyung Hee University)
  • Ji Hoon Lee(Kyung Hee University)
  • Seung Min Woo(Kyung Hee University) Corresponding author