논문 상세보기

Surface Engineering Technologies for Mitigation and Repair of Chloride- Induced Stress Corrosion Cracking in Stainless-Steel Canisters for Spent

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430976
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Safe management of spent nuclear fuel (SNF) is a key issue to determine sustainability of current light water reactor (LWR) fleet. However, none of the countries are actually conducting permanent disposal of SNFs yet. Instead, most countries are pursuing interim storage of spent nuclear fuels in dry cask storage system (DCSS). These dry casks are usually made of stainlesssteels for resistibility against cracking and corrosion, which can be occurred over a long-term storage period. Nevertheless, some corrosion called Chloride-Induced Stress Corrosion Cracking (CISCC) can arise in certain conditions, exacerbating the lifetime of dry casks. CISCC can occur if the three conditions are satisfied simultaneously: (i) residual tensile stress, (ii) material sensitization, and (iii) chloride-rich environment. A residual tensile stress is developed by the two processes. One is the bending process of stainless-steel plates into a cylindrical shape, and the other is the welding process, which can incur solidification-induced stress. These stresses provide a driving force of pit-to-crack transition. Around the fusion weld areas, chromium is precipitated at the grain boundary as a carbide form while it depletes chromium around it, leading to material susceptible to pitting corrosion. It is called sensitization. Finally, coastal regions, where nuclear power plants usually operate, tend to have a higher relative humidity and more chloride concentration compared to inland areas. This high humidity and chloride ion concentration initiate pitting corrosion on the surface of stainless-steels. To prevent initiation of CISCC, at least one of the three conditions should be removed. For this, several surface engineering techniques are under investigation. One of the most promising approaches is surface peening method, which is the process that impacts the surface of materials with media (e.g., small pins, balls, laser pulse). By this impact, plastic deformation on the surface occurs with compressive stress that counteracts with pre-existing residual tensile stress, so this approach can prevent pit-to-crack transition of stainless-steels. Also, cold spray deposition can prevent CISCC. Cold spray deposition is a method of spraying fine metal powder to a substrate by accelerating them to supersonic velocity with propellant gas. As a result, a thin coating composed of the feedstock powders can protect the substrate from outer corrosive environments. In addition, the impact of the feedstock powder on the substrate during the process provides compressive stress, similar to the peening method.

저자
  • Jinwook Choi(Pohang University of Science and Technology (POSTECH))
  • Hwasung Yeom(Pohang University of Science and Technology (POSTECH)) Corresponding author