논문 상세보기

A Case Study on Clearance of Radioactive Material and Removal of Non-radioactive Material From the Decommissioning NPPs in Germany

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/431013
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

The operation and decommissioning of nuclear power plants (NPPs) creates waste in the process of handling radioactively contaminated material, which must be disposed of in a repository or can be recovered of in the same way as conventional waste in the course of handling radioactively contaminated materials. For buildings or sites of NPPs it also has to be decided under what conditions they can continue to be used for other, conventional purposes or demolished. This decision is referred to as “release from supervision under nuclear and radiation protection law” or “clearance” in short. The clearance levels applicable in Germany according to the Radiation Protection Ordinance have been defined such that a radiation dose (hereinafter referred to as “dose”) of 10 μSv per year is not exceeded. The vast majority of the materials resulting from the dismantling of a nuclear power plant (e.g. most of the massive concrete structures) are neither contaminated nor activated. Thus, there is no need to treat these materials as radioactive waste. Emplacement of uncontaminated masses which in Germany is essentially several million tonnes of building rubble in a repository would require additional construction of such facilities, which, in view of the negligible hazard potential, from the point of view of the Nuclear Waste Management Commission (ESK) is clearly to be rejected both economically and, in particular, ecologically. Alternative ways are increasingly discussed in public, such as the abandonment of buildings after gutting, i.e. refraining from demolition of the controlled area buildings of NPPs. Also, another proposal discussed in public, the landfilling or the long-term storage of cleared material at the site, does not offer any safety-related advantages either in the view of the ESK. If, after completion of all dismantling work, the building has been decontaminated such that the clearance levels for buildings are complied with further use of the building rubble resulting from demolition is harmless from a radiological point of view. For these reasons, Germany has deliberately decided to use clearance as an essential measure in the dismantling of NPPs. If it is intended to conventionally reuse or depose of virtually contaminant-free material from controlled areas, it must first undergo a clearance procedure. The prerequisites that must be fulfilled for clearance are regulated in the Radiation Protection Ordinance, which includes two basic clearance pathways: unrestricted and specific clearance. In the following, the basic process of clearance is briefly presented and illustrated for a better understanding. It comprises five steps. Step 1-Radiological characterization by sampling, Step 2-Dismantling of plant components in the controlled area, Step 3- Decontamination, Step 4-Decission measurements, Step 5-Clearacnce and further management. The entire clearance process is governed by a clearance notice and is carried out under the supervision of the competent authority under nuclear and radiation protection law or the independent authorized expert commissioned by it. The clearance pathways contained in the Radiation Protection Ordinance have proven themselves in practice. They permit safe and proper management of material from dismantling and release of the site from supervision under nuclear and radiation protection law. These German regulatory procedures should be taken into account and deregulation and removal should be used as appropriate and necessary tools in the process of decommissioning NPPs in order to return non-hazardous materials to the material cycle or for conventional disposal.

저자
  • Jihwan Yu(Korea Hydro and Nuclear Power (KHNP) Central Research Institute (KHNP-CRI))
  • Hyung-woo Seo(Korea Hydro and Nuclear Power (KHNP) Central Research Institute (KHNP-CRI)) Corresponding author
  • Gi-lim Kim(Korea Hydro and Nuclear Power (KHNP) Central Research Institute (KHNP-CRI))