Heavy water (D2O) is a coolant as well as a moderator of pressurized heavy water reactors (PHWRs). During operation of PHWRs, deuterium (H-2, D) in heavy water is gradually converted to tritium (H-3, T), which is a radioactive nuclide with a half-life of 12.3 years, by capturing neutron. Various radioactive wastes contaminated by T are generated upon the PHWR operation. Owing to the similarity of D and T, they behave together a form of water (either liquid or vapor) in a normal circumstance. To handle D and T with the water form is quite difficult because it is not a solid and is highly mobile in nature. In this study, a mineralization technique to fix D and T in a solid form is suggested. It is considered that hydroxide minerals, which have low solubility in water, might tightly bind D and T in non-mobile, solid-state media. Feasibility of this strategy is studied by using a copper-based hydroxide mineral, atacamite. Atacamite is a natural mineral found in copper deposits with chemical formula of Cu2Cl(OH)3. Atacamite can be simply synthesized in laboratories by a precipitation method using copper chloride and calcium carbonate as precursors. Both chemicals were added into heavy water to obtain pale-green precipitates. Heavy water is the only source for D in this reaction and thus deuterated mineral is expected to be form. The obtained deuterated mineral, suspected to be Cu2Cl(OD)3, was then immersed in natural deionized water (extremely low D2O concentration) for several days to identify how fast D in Cu2Cl(OD)3 dissolves into water. In a preliminary Fourier transform infrared (FTIR) spectroscopy, absorption peaks related to HDO and D2O were not observed in the deionized water which is recovered after the immersion test, suggesting that D remained stable in the synthesized mineral. However, owing to low detection limit of FTIR, more precise analysis should be taken to clearly identify the stability of D of the deuterated atacamite. If deuterated hydroxide minerals are found to have sufficiently high D stability in natural water, they can be further treated with cement or other stabilization media to form a final wasteform for underground disposal.