Under the Foreign Trade Act, an export license from the Nuclear Safety Commission is required to export items specified in Part 10 of Schedule 2 of the Public Notice of Exportation and Importation of Strategic Items (Trigger List Items). In the case of nuclear materials, deuterium, and heavy water, its cumulative amount determines whether it is trigger list item. An export license is required only if the cumulative amount exported to a single end-user country from January 1st to December 31st exceeds the regulation criteria. The reason for this cumulative control is to exclude small amounts of materials from the scope of control as they are considered less important in view of nuclear proliferation, but to prevent the possibility of acquiring large quantities of materials by importing small amounts several times. As a result, export control of nuclear material, deuterium, and heavy water requires different considerations than other Trigger List Items. First, materials exported by different companies must be consolidated to manage the cumulative amount. Second, it is necessary to continuously follow up the actual export status. If the material is not exported after it was classified as ‘non-Trigger List Items’, it should not be included in the cumulative amount. Third, there may be a difference between the accumulated quantities aggregated at the time of the classification and the time of the actual export. The classification should be changed if an export of the classified material is postponed or another export of same materials occurs before the export of the classified material. Fourth, the classification result of these materials should not be reused. Generally, the classification result could be reused within the expiration date (2 years) but in the case of substances. However, the reuse of classification result for materials should be limited as the classification results could be change depending on the cumulative amount. In addition, the sharing of classification results between different entities should also be restricted. The government approval procedures are required even for export of small amounts of nuclear materials which are less than the regulation criteria. The cumulative quantities of nuclear materials are systematically managed in the Nuclear Export & imPort control System (NEPS) through these procedures. NEPS is also linked to the custom clearance system of Korea Customs Service, which enables to track actual exports and the time of exports. However, cumulative quantities for the heavy water and deuterium are managed individually by classification reviewers. The annual export plans are received in advance from major entities which deal with the materials for nuclear uses, and the cumulative quantities for each application are managed manually. The systematic management has not been required as there were a few cases of exporting small quantities. However, systematic management may be required in the future as overseas expansion attempts from various companies in the nuclear field has been increasing. In addition, further study is needed on the criteria and system for calculating the cumulative amount. The time of aggregate the cumulative amount should be clarified by considering the difference between the time of classification and actual export. It is required to devise an efficient way to follow up the actual export.
Heavy water (D2O) is a coolant as well as a moderator of pressurized heavy water reactors (PHWRs). During operation of PHWRs, deuterium (H-2, D) in heavy water is gradually converted to tritium (H-3, T), which is a radioactive nuclide with a half-life of 12.3 years, by capturing neutron. Various radioactive wastes contaminated by T are generated upon the PHWR operation. Owing to the similarity of D and T, they behave together a form of water (either liquid or vapor) in a normal circumstance. To handle D and T with the water form is quite difficult because it is not a solid and is highly mobile in nature. In this study, a mineralization technique to fix D and T in a solid form is suggested. It is considered that hydroxide minerals, which have low solubility in water, might tightly bind D and T in non-mobile, solid-state media. Feasibility of this strategy is studied by using a copper-based hydroxide mineral, atacamite. Atacamite is a natural mineral found in copper deposits with chemical formula of Cu2Cl(OH)3. Atacamite can be simply synthesized in laboratories by a precipitation method using copper chloride and calcium carbonate as precursors. Both chemicals were added into heavy water to obtain pale-green precipitates. Heavy water is the only source for D in this reaction and thus deuterated mineral is expected to be form. The obtained deuterated mineral, suspected to be Cu2Cl(OD)3, was then immersed in natural deionized water (extremely low D2O concentration) for several days to identify how fast D in Cu2Cl(OD)3 dissolves into water. In a preliminary Fourier transform infrared (FTIR) spectroscopy, absorption peaks related to HDO and D2O were not observed in the deionized water which is recovered after the immersion test, suggesting that D remained stable in the synthesized mineral. However, owing to low detection limit of FTIR, more precise analysis should be taken to clearly identify the stability of D of the deuterated atacamite. If deuterated hydroxide minerals are found to have sufficiently high D stability in natural water, they can be further treated with cement or other stabilization media to form a final wasteform for underground disposal.
Dielectrophoretic filtering and alignment of single-walled carbon nanotubes (SWCNTs) were tested using deuterium oxide as a solvent. A solution of deuterium oxide-SWCNTs was dropped on top of a silicon chip and an ac electric field was applied between pre-defined electrodes. Deuterium oxide was found to be a better solvent than hydrogen oxide for the dielectrophoresis process with higher efficiency of filtering. This was demonstrated by comparing Raman spectra measured on the initial solution with those measured on the filtered solution. We found that the aligned nanotubes along the electric field were not deposited on the substrate but suspended in solution, forming chain-like structures along the field lines. This so-called pearl chain formation of CNTs was verified by electrical measurements through the aligned tubes. The solution was frozen in liquid nitrogen prior to the electrical measurements to maintain the chain formation. The current-voltage characteristics for the sample demonstrate the existence of conduction channels in the solution, which are associated with the SWCNT chain structures.
Catharanthus roseus로부터 생산되는 빈카알칼로이드는 암을 치료하는 데에 사용되는 가장 중요한 천연물 중의 하나이다. 이러한 항암제는 두 단량체 인돌 알칼로이드인 catharanthine과 vindoline의 결합으로 합성될 수 있다. 이 중 vindoline의 생합성에 관계하는 경로를 조사하기 위해서 tabersonine의 메틸기에 중수소를 치환한 전구체인 tabersonine-CD3 1a를 합성하였다. 이는 중수소의 질량 증가로 인해 자연에서 발생하는 tabersonine과 뚜렷이 구별될 수 있도록 해 준다. 우리는 이 중소소가 치환된 tabersonine 1a가 성공적으로 vindoline 생합성경로에 편입되어 중수소가 치환된 3개의 새로운 vindoline 중간체(2a, 3a와 4a)를 생성함을 보였다. 세포현탁배양액에 tabersonine-CD3 1a를 주입한 5일과 13일째에 생성된 대사물인 16-Hydroxytabersonine-CD3 (m/z 356) 2a, 16-Methoxytabersonine-CD3 (m/z 370) 3a와 16-Methoxy-2,3-dihydro-3- hydroxytabersonine-CD3 (m/z 388) 4a의 생성량을 UPLC/MS를 사용하여 측정하였다. 출발물 1a에서 생성물 2a, 그리고 2a에서 3a로의 전환은 빨랐던 반면 3a에서 4a로의 전환은 상대적으로 훨씬 느렸다. 따라서 각 대사물들의 상대적 전환속도를 서로 비교해 보았을 때 vindoline 생합성 과정의 첫 세 단계 중에서 가장 느린 마지막 단계가 속도결정단계임을 암시한다. 즉 대사물 3a에서 4a로의 느린 전환속도의 결과, 배양 후 13일까지도 3a의 축적률이 현저히 증가됨을 보였다. 배양 5일째의 대사물 2a, 3a와 4a의 축적비는 각각 1, 2와 0.1이었다. 그러나 desacetoxyvindoline-CD3 5a, deacetylvindoline-CD3 6a와 vindoline-CD3 7a의 피크는 배양 13일 후에도 발견되지 않아 세포현탁 배양액에 각 생합성단계와 관련된 효소들이 존재하지 않음을 알 수 있었다.
본 논문에서는 고준위 핵폐기물의 지하 처분 시 사용되는 핵폐기물 처분장치의 기본 구조설계에 필요한 처분장치내의 핵 폐기물다발들을 지지하는 내부 삽입물의 구조형상과 재원 또 처분장치의 화학적 부식을 방지하기 위해 외곽에 설치하는 외곽쉘과 위아래 덮개의 두께를 결정하기 위하여 처분장치 구조물에 대한 선형정적 구조해석을 수행하였다. 해석 대상 처분장치는 가압경수로와 중수로의 핵폐기물 처분장치를 사용하였다. 일반적으로 핵폐기물 처분장치는 지하수백 미터에 위치하는 화강암 등의 암반 내에 설치하게 되는데 이 때 지하수의 침수에 의한 지하수압 및 처분장치 외곽에 완충장치로 설치하는 벤토나이트 버퍼의 팽윤압을 견디어 내야 한다. 따라서 이와 같은 압력의 변화에 따른 처분장치 구조물에 발생하는 응력 및 변형 등을 알기 위해서는 처분장치 구조물에 대한 구조해석을 수행해야 된다. 이를 위하여 본 논문에서는 처분장치에 대하여 선형정적 구조해석을 수행하였다.