논문 상세보기

Strategy for the Mitigation of Radioxenon Emission From Fission-based Radioisotope Production

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/431238
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Molybdenum-99 (Mo-99) and, its daughter, technetium-99m (Tc-99m) are the most commonly used medical isotope covering more than 85% of the nuclear diagnostics. Currently, majority of Mo-99 supplied in the market is fission-based Mo-99 produced by the fission of U-235 in research reactors. In spite of substitutive production schemes, fission-based Mo-99 is the major source for its significant advantages of high specific activity and large production capacity. The new research reactor (KJRR) is under construction in Gijang, Busan, Korea. The project is aiming 2,000 Ci/week Mo-99 production. For the objective, KAERI has been developed Mo-99 production process using HANARO. Weekly production of 2,000 Ci (100,000 Ci/yr, 6-day calibration) Mo-99 can cover 100% domestic needs, as well as 20% of international demand. However, overall cost for the fission-based Mo-99 production is continuously increasing. Previously, the most Mo-99 producers used weapon-grade highly enriched uranium (HEU) targets. Recently, the use of HEU in private sector is limited for non-proliferation. As a result, major Mo-99 producers are forced to convert their targets from HEU to low enriched uranium (LEU, 19.75% U-235 enrichment). The conversion of Mo-99 target caused waste issue. It is not only because of the 50% less yield in production, but also increment of the radioactive waste by 200%. Therefore, designing optimal radioactive waste treatment strategy for fission-based Mo-99 production is becoming more important than ever. During the process, irradiated LEU targets are dissolved in alkaline solution in hot cells. Fission products other than Mo-99 removed from the solution via series of separation steps. Then Mo-99 is eluted and purified to meet international standard as an active pharmaceutical ingredients (APIs). Radioisotopes of xenon (Xe) and krypton (Kr) generated from the fission of U-235 during the irradiation of the target in the research reactor. Then, the radioactive gas released during the process. The emission of radioactive noble gas from the medical radioisotope production facility can be controlled via delayed release through large charcoal beds. KAERI developed compact xenon adsorption module with chilled carbon column to meet 5 GBq/ day of CTBTO recommendation. Small volume of chilled charcoal can satisfy the guideline, replacing massive gas tank system. Therefore, development of optimized radioactive gas treatment system for the Mo-99 production is one of the essential piece for the successful construction, licensing and operation of the KJRR project.

저자
  • Seung-Kon Lee(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Suseung Lee(Korea Atomic Energy Research Institute (KAERI))