검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.11 구독 인증기관·개인회원 무료
        The CTBTO is the Comprehensive Test Ban Treaty Organization to ban all forms of nuclear testing (underwater, air, and underground) worldwide and was adopted at the UN’s 50th annual general meeting in September 1996. As of September 2023, 187 out of 196 countries signed and 178 ratified. The Republic of Korea signed it in 1996 and ratified it in 1999. Several major Annex 2 countries still need to ratify it, and certain countries have not even signed it, so it has not come entry into force. The CTBTO has three verification systems for nuclear tests and consists of the International Monitoring System (IMS), the International Data Center (IDC), and On-Site Inspections (OSI). IMS consists of seismic, hydroacoustic, infrasound, and radionuclide monitoring. The measured data are delivered to IDC, analyzed by CTBTO headquarters, distributed raw data, and analyzed forms to member states. The final means of verification is in the field of OSI and will be operated when CTBT takes effect. Based on the IMS data, inspectors will be dispatched to the Inspected State Party (ISP) to check for nuclear tests. KINAC is attending the Working Group B, OSI technology development verification along with KINS and KIGAM. Since OSI is a means for final verification, integrated capabilities such as seismic and data interpretation and nuclides detection are required. CTBTO continues its efforts to foster integrated talent and modernize OSI equipment. Types of equipment include measurement, flight simulation equipment, and geographic information monitoring systems etcetera. KINAC is also developing equipment to detect contaminated areas using drones and probes. Development equipment is the nuclides detection and measurement of contaminated areas, and it is the equipment that prepares a control center and drops probes into suspected contamination areas to find a location of the radiation source. The probe can be used to track the location where the dose is most substantial through Bayesian estimation and source measurement.