For the disposal of radioactive waste from nuclear facilities, assessing their radioactivity inventories is essential. As a result, countries with nuclear facilities are implementing assessment schemes tailored to their respective policies and available resources for radioactive waste management. This paper specifically describes the assessment scheme for radioactivity inventory applied to metal waste generated during the dismantling of the Japan Power Demonstration Reactor (JPDR), a 1.25 MW BWR. The distinctive aspect of the Japanese approach lies in the fact that, for a pair of a key nuclide and a difficult-to-measure (DTM) nuclide that lack a significant correlation in their concentrations, the mean activity concentration method was used. In this method, an arithmetic average of all measurements of the DTM nuclide from representative drums, including MDAs (Minimum Detectable Activities), was assigned to the concentration of the DTM nuclide for all drums, regardless of the concentration of its paired key nuclide. Conversely, for a specific pair of a key nuclide and a DTM nuclide with a significant correlation, the scaling factor method was applied, as is common in many other countries. This Japanese case can serve as a valuable reference for Korea, which does not have the option of using the mean activity concentration method in its assessment scheme.