논문 상세보기

Chemical Decontamination Technologies for the Decommissioning of NPPs

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/431428
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

The radiation field generated in the primary cooling system of a nuclear power plant tends to increase in intensity as radionuclides bind to the oxide film on the internal surface of the primary system, which is operated at high temperature and pressure, and as the number of years of operation increases. Therefore, decontamination of the primary cooling system to reduce worker exposure and prevent the spread of contamination during maintenance and decommissioning of nuclear power plants uses the principle of simultaneous elution of radionuclides when the corrosion oxide film dissolves. In general, a multi-stage chemical decontamination process is applied, taking into account the spinel structure of the corrosion oxide film formed on the surface of the primary cooling system, i.e. an oxidative decontamination step is applied first, followed by a reductive decontamination step, which is repeated several times to reach the desired decontamination goal. Currently, permanganic acid is commonly used in oxidative decontamination processes to remove Cr from corrosion oxide films. In the reductive decontamination step to remove iron and nickel, organic acids such as oxalic acid are commonly used. However, organic acids are not suitable for the final radioactive waste form. A number of multi-stage chemical decontamination technologies for primary cooling systems have been developed and commercialized, including NP-CITROX, AP/NP-CANDECON, CANDERM, AP/NP-LOMI and HP/CORD-UV. Among these, HP/CORDUV is currently the most actively applied primary cooling system chemical desalination process in the world. In this study, KAERI has developed a new chemical decontamination technology that does not contain organic chemical decontamination agents, with a focus on securing an original technology for reducing the amount of decontamination waste while having equivalent or better decontamination performance than overseas commercial technologies, and compared it with the inorganic chemical agent-based HyBRID (Hydrazine Based Reductive Metal Ion Decontamination) chemical decontamination technology.

저자
  • Miguta Faustine Ngulimi(University of Science and Technology (UST), Korea Atomic Energy Research Institute (KAERI))
  • Sion Kim(University of Science and Technology (UST), Korea Atomic Energy Research Institute (KAERI))
  • Byung Seon Choi(Korea Atomic Energy Research Institute (KAERI))
  • Bum Kyoung Seo(Korea Atomic Energy Research Institute (KAERI))
  • Changhyun Roh(University of Science and Technology (UST), Korea Atomic Energy Research Institute (KAERI)) Corresponding author