논문 상세보기

Analysis of Site Hydraulic Characteristics for Combustible Radioactive Waste Treatment Facility (CRWTF) and Groundwater Modeling Validation

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/431514
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

To secure approval for a decommissioning plan in Korea, it is essential to evaluate contamination dispersion through groundwater during the decommissioning process. To achieve this, licensees must assess the groundwater characteristics of the facility’s site and subsequently develop a groundwater flow model. It is worth noting that Combustible Radioactive Waste Treatment Facility (CRWTF) is characterized by their simplicity and absence of liquid radioactive waste generation. Given these facility characteristics, the groundwater flow model for CRWTF utilizes data from neighboring facilities, with the feasibility of using reference data substantiated through comparative analysis involving groundwater characteristic testing and on-site modeling. To enable a comparison between the actual site’s groundwater characteristics and the referenced modeling, two types of hydraulic constant characterization tests were conducted. First, hydraulic conductivity was determined through long-term pumping and recovery tests. The ‘Theis’ and ‘Cooper-Jacob’ equations, along with the ‘Theis recovery’ equation, were applied to calculate hydraulic conductivity, and the final result adopted the average of the calculated values. Secondly, a groundwater flow test was conducted to confirm the alignment between the main flow direction of the referenced model and the groundwater flow in the CRWTF, utilizing the particle tracking technique. The evaluation of hydraulic conductivity from the hydraulic constant test revealed that the measured value at the actual site was approximately 1.84 times higher than the modeled value. This variance is considered valid, taking into consideration the modeling’s calibration range and the fact that measurements were taken during a period characterized by wet conditions. Furthermore, a close correspondence was observed between the groundwater flow direction in the reference model (ranging from 90° to 170°) and the facility’s actual flow direction (ranging from 78° to 95°). The results of reference data for the CRWTF, based on the nearby facility’s model, were validated through the hydraulic properties test. Consequently, the modeling data can be employed for the demolition plan of CRWTF. It is also anticipated that these comparative analysis methods will be instrumental in shaping the groundwater investigation plans for facilities with characteristics similar to CRWTF.

저자
  • Jeongwook Moon(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Jun Lee(Korea Atomic Energy Research Institute (KAERI))
  • Hee-Chul Eun(Korea Atomic Energy Research Institute (KAERI))