논문 상세보기

Analysis of the Ocean Transfer Evaluation Methodology for the Overseas Maritime Transport Risk Assessment Codes

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/431517
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

The demand for transportation is increasing due to the continuous generation of radioactive wastes. Especially, considering the geographical characteristics of Korea and the location characteristics of nuclear facilities, the demand for maritime transportation is expected to increase. If a sinking accident happens during maritime transportation, radioactive materials can be released into the ocean from radioactive waste transportation containers. Radioactive materials can spread through the ocean currents and have radiological effects on humans. The effect on humans is proportional to the concentration of radioactive materials in the ocean compartment. In order to calculate the concentration of radioactive materials that constantly flow along the ocean current, it is necessary to divide the wide ocean into appropriate compartments and express the transfer processes of radioactive materials between the compartments. Accordingly, this study analyzed various ocean transfer evaluation methodologies of overseas maritime transportation risk codes. MARINRAD, POSEIDON, and LAMER codes were selected to analyze the maritime transfer evaluation methodology. MARINRAD divided the ocean into two types of compartments that water and sediment compartments. And it was assumed that radionuclides are transfered from water to water or from water to sediment. Advection, diffusion, and sedimentation were established as transfer process for radionuclides between compartments. MARINRAD use transfer parameters to evaluate transer processes by advection, diffusion, and sedimentation. Transfer parameters were affected by flow rate, sedimentation rate, sediment porosity, and etc. POSEIDON also divided the ocean into two types that water and sediment compartment, each compartments was detaily divided into three vertical sub-compartment. Advection, diffusion, resuspension, sedimentation, and bioturbation were established as transport processes for radionuclides between compartments. POSEIDON also used transfer parameters for evaluating advection, diffusion, resuspension, sedimentation, and bioturbation. Transfer parameters were affected by suspended sediment rates, sedimentation rates, vertical diffusion coefficients, bioturbation factors, porosity, and etc. LAMER only considered the water compartment. It divided the water compartment into vertical detailed compartments. Diffusion, advection and sedimentation were established as the nuclide transfer processes between the compartments. To evaluated the transfer processes of nuclides for diffusion and advection, LAMER calculated the probability with generating random position vectors for radionuclides’ locations rather than deterministic methods such as MARINRAD’s transfer parameters or POSEIDON’s transfer rates to evaluate transfer processes. The results of this study can be used as a basis for developing radioactive materials’ ocean transfer evaluation model.

저자
  • Ga Eun Oh(Kyung Hee University)
  • Min Woo Kwak(Kyung Hee University)
  • Min Seong Kim(Kyung Hee University)
  • Kwang Pyo Kim(Kyung Hee University) Corresponding author