In this study, the various process conditions for high-power DC Magnetron Sputtering (DCMS) on the surface roughness of carbon thin films were investigated. The optimal conditions for Si/C coating were 40min for deposition time, which does not deviate from normal plasma, to obtain the maximum deposition rate, and the conditions for the best surface roughness were – 16volt bias voltage and 400watt DC power with 1.3x10-3torr chamber pressure. Under these optimal conditions, an excellent carbon thin film with a surface roughness of 1.62nm and a thickness of 724nm was obtained. As a result of XPS analysis, it was confirmed that the GLC structure ( bonding) was more dominant than the DLC structure ( bonding) in the thin film structure of the carbon composite layer formed by DC sputtering. Except in infrequent cases of relatively plasma instability, the lower bias voltage and applied power induces smaller surface roughness value due to the cooling effect and particle densification. For the optimal conditions for Graphite/C composite layer coating, a roughness of 36.3 nm and a thickness of 711 nm was obtained under the same conditions of the optimal process conditions for Si/C coating. This layer showed a immensely low roughness value compared to the roughness of bare graphite of 242 nm which verifies that carbon coating using DC sputtering is highly effective in modifying the surface of graphite molds for glass forming.