Fluorine heteroatoms were introduced to increase the limited specific capacitances of electric double-layer capacitors (EDLCs), and the effects of the fluorine atoms were analyzed. To introduce the fluorine, a CF4 plasma treatment was used that introduced the fluorine atoms quickly. Among the fluorine functional groups in the F6-ACA framework, the semi-ionic C–F bonds induced rapid charge transfer and imparted pseudocapacitance. Consequently, we achieved a specific capacitance of 325.68 F/g for the F6-CA sample at 0.5 A/g. By analyzing the contributions of the electric double-layer capacitance and the pseudocapacitance, we determined that the contribution from the pseudocapacitance was 37.57%. A remarkable specific capacitance retention rate of 95.87% was obtained over 1000 charge/discharge cycles with a high current density of 3 A/g. Additionally, the semi-ionic C–F bonds reduced the charge transfer resistance ( Rct) by 36.8%. Therefore, the specific capacitance was improved by the fluorine heteroatoms, and the semi-ionic C–F bonds played a pivotal role in this improvement.