In this study, we utilized a multi-step stabilization method, incorporating dry-oxidation, to produce high-density polyethylene (HDPE)-based activated carbon fibers. This stabilization was achieved through electron-beam irradiation, sulfonation, and dry oxidation. The stabilized fibers were carbonized and activated at 900 ℃. The crystallite characteristics of the activated carbon fibers were observed using X-ray diffraction, and their surface morphologies were analyzed through scanning electron microscopy. The textural properties were analyzed using N2/ 77 K adsorption–desorption isothermal curves. And leveraging the microdomain model, we explored the influence of these stabilization methods on the HDPE-based activated carbon fibers texture properties. The results show that HDPE fibers treated with sulfonation only at 100 ℃ for 60 min were not sufficiently cross-linked and were completely decomposed during the carbonization stage. However, the sulfonated fibers treated with the new dry-oxidation process maintained their shapes and were successfully activated. The specific surface area of the resulting activated carbon fibers was as much as 2000 m2/ g.