논문 상세보기

Effect of non‑thermal plasma injection flow rate on diesel particulate filter regeneration at room temperature KCI 등재

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/435126
구독 기관 인증 시 무료 이용이 가능합니다. 4,800원
Carbon Letters (Carbon letters)
한국탄소학회 (Korean Carbon Society)
초록

For the regeneration of diesel particulate filters (DPF) using non-thermal plasma (NTP), both cost-effectiveness and regeneration efficiency should be raised. This study compared and contrasted the physicochemical characteristics of carbon black and engine particulate matter (PM). After carbon black was put into the DPF, an experimental setup for the oxidation of PM using NTP was created. The findings showed that carbon black and PM samples had comparable oxidation traits, micronanostructures, and C/O elemental ratios. O3, the main active species in NTP, was susceptible to heat breakdown, and the rate of decomposition of O3 increases with increasing temperature. The removal effectiveness of carbon black first improved and subsequently declined with an increase in the NTP injection flow rate during offline DPF regeneration using NTP at room temperature. A relatively high carbon black removal efficiency of 85.1% was achieved at an NTP injection flow rate of 30 L/min.

목차
Effect of non-thermal plasma injection flow rate on diesel particulate filter regeneration at room temperature
    Abstract
    1 Introduction
    2 Experimental system and research methodology
        2.1 Analysis of the physicochemical characteristics of carbon black and PM
        2.2 Non-thermal plasma regeneration diesel particulate filter
        2.3 Decomposition experiment of the main active substance O3 in non-thermal plasma
        2.4 Reaction mechanism of decomposing carbon black by non-thermal plasma
    3 Experimental results and analysis
        3.1 Analysis of the physicochemical characteristics of carbon black and diesel engine PM
            3.1.1 Oxidizing characteristics
            3.1.2 CO elemental ratios and their forms of occurrence
            3.1.3 Micro-nanostructures
            3.1.4 Crystal structure and disorder
        3.2 Decomposition behavior of O3 with temperature
        3.3 Decomposition products and temperature changes during DPF regeneration
        3.4 Mass of carbon black decomposition
    4 Conclusion
    Acknowledgements 
    References
저자
  • Xulong Chen(School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People’s Republic of China)
  • Yunxi Shi(School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People’s Republic of China) Corresponding author
  • Yixi Cai(School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People’s Republic of China)
  • Junfeng Xie(School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People’s Republic of China)
  • Yinqin Yang(School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People’s Republic of China)
  • Daolong Hou(School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People’s Republic of China)
  • Yongsheng Fan(School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, People’s Republic of China)