최근 자율주행 차량의 등장으로 인해 기존의 교통 시스템에 많은 변화가 생길 것으로 보이며, 운전자가 주행하던 차량과는 다른 행태로 인해 기존 비자율주행 차량들이 초래하는 고위험 상황의 요인과는 다른 새로운 요인들이 도출될 것으로 보인다. 하지만, 현 시점 국내 에서는 자율주행 차량이 실제로 주행하고 있지 않기 때문에 주행행태를 포함한 데이터 기반의 주요 요인 분석 및 도출에 한계가 있다. 따라서 현 시점에서 자율주행 차량이 혼재하는 환경에서 고위험한 상황을 정의할 수 있는 요인을 도출하기 위해서는 사례 중심의 분석이 필요하다. 따라서 본 연구에서는 기존 국내·외 자율주행차량과 관련된 다양한 논문 사례를 DB화하여 이를 정량적으로 평가할 수 있는 메타 분석(Meta-Analysis) 기법을 통해 향후 자율주행차량이 혼재하는 교통 네트워크에서 안전성을 증진하기 위한 고위험 유발의 주요 요인을 도출하고자 하였다. 본 연구에서 DB화한 논문은 자율주행 차량과 관련된 총 4가지(사고요인, 시나리오, 예측모델, 법규)에 해당 하는 분야로 분류하여 수집하였으며, 2015년부터 2024년 까지 최근 10개년에 해당 되는 사례를 수집하여 분석을 수행하고 주요 요인을 도출하였다. 본 연구의 결과는 향후 자율주행 차량 혼재 시 고위험 상황의 주요 요인들을 바탕으로 각 요인에 기반한 자율주행차량 혼재 시 고위험 상황에 대한 정의를 할 수 있으며, 이러한 고위험 요인들에 의해 도로교통의 안전성이 저해될 수 있는 요인에 대한 사전 예방을 수행할 수 있을 것으로 기대된다.