논문 상세보기

Machine Learning Modeling of the Mechanical Properties of Al2024-B4C Composites KCI 등재

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/437654
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국분말야금학회지 (Journal of Korean Powder Metallurgy Institute)
한국분말재료학회(구 한국분말야금학회) (Korean Powder Metallurgy Institute)
초록

Aluminum-based composites are in high demand in industrial fields due to their light weight, high electrical conductivity, and corrosion resistance. Due to its unique advantages for composite fabrication, powder metallurgy is a crucial player in meeting this demand. However, the size and weight fraction of the reinforcement significantly influence the components' quality and performance. Understanding the correlation of these variables is crucial for building high-quality components. This study, therefore, investigated the correlations among various parameters—namely, milling time, reinforcement ratio, and size—that affect the composite’s physical and mechanical properties. An artificial neural network model was developed and showed the ability to correlate the processing parameters with the density, hardness, and tensile strength of Al2024-B4C composites. The predicted index of relative importance suggests that the milling time has the most substantial effect on fabricated components. This practical insight can be directly applied in the fabrication of high-quality Al2024-B4C composites.

목차
1. Introduction  
2. Materials and methods  
    2.1. Data collection and input-output variables of the model  
    2.2. Training procedure of ANN model  
3. Result and discussion  
    3.1. Validation of ANN model and weights distribution  
    3.2. Prediction of the density, hardness, and tensile strength  
    3.3. Index of the relative importance  
4. Conclusion  
Conflict of Interest Declaration  
Author Information and Contribution 
References
저자
  • Maurya A. K.(Lightweight Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea)
  • Narayana P. L.(Lightweight Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea)
  • Wang X.-S.(Engineering Research Institute, School of Materials Science and Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea)
  • Reddy N. S.(Engineering Research Institute, School of Materials Science and Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea) Corresponding author