Perovskite-based solar cells have recently exhibited rapid improvement in power conversion efficiency due to their high optical and electrical properties. However, perovskite materials are fundamentally degraded by heat and moisture, making long-term stability a critical issue. One way to improve the stability of perovskite solar cells is to encapsulate them. However, a low temperature encapsulation process of less than 100 °C is needed to minimize degrading the perovskite materials. High moisture barrier properties are also required. To realize a high performance encapsulation layer at low temperature we employed atomic layer deposition (ALD) technique. As the encapsulation layer materials, Al2O3, which is most commonly used due to its high density and optical properties, and SnO2, which is mainly used as an electron transport layer in perovskite solar cells, were selected. Single film and multi-layer structured films of Al2O3 and SnO2 were deposited, and the structural, optical, and moisture permeability properties were investigated.