Most reinforced concrete (RC) school buildings constructed in the 1980s have seismic vulnerabilities due to low transverse reinforcement ratios in columns and beam-column joints. In addition, the building structures designed for only gravity loads have the weak-columnstrong- beam (WCSB) system, resulting in low lateral resistance capacity. This study aims to investigate the lateral resistance capacities of a two-story, full-scale school building specimen through cyclic loading tests. Based on the experimental responses, load-displacement hysteresis behavior and story drift-strain relationship were mainly investigated by comparing the responses to code-defined story drift limits. The test specimen experienced stress concentration at the bottom of the first story columns and shear failure at the beam-column joints with strength degradation and bond failure observed at the life safety level specified in the code-defined drift limits for RC moment frames with seismic details. This indicates that the seismically vulnerable school building test specimen does not meet the minimum performance requirements under a 1,400-year return period earthquake, suggesting that seismic retrofitting is necessary.