Due to seismically deficient details, existing reinforced concrete structures have low lateral resistance capacities. Since these building structures suffer an increase in axial loads to the main structural element due to the green retrofit (e.g., energy equipment/device, roof garden) for CO2 reduction and vertical extension, building capacities are reduced. This paper proposes a machine-learning-based methodology for allowable ranges of axial loading ratio to reinforced concrete columns using simple structural details. The methodology consists of a two-step procedure: (1) a machine-learning-based failure detection model and (2) column damage limits proposed by previous researchers. To demonstrate this proposed method, the existing building structure built in the 1990s was selected, and the allowable range for the target structure was computed for exterior and interior columns.
Existing reinforced concrete buildings with seismically deficient details have premature failure under earthquake loads. The fiber-reinforced polymer column jacket enhances the lateral resisting capacities with additional confining pressures. This paper aims to quantify the retrofit effect varying the confinement and stiffness-related parameters under three earthquake scenarios and establish the retrofit strategy. The retrofit effects were estimated by comparing energy demands between non-retrofitted and retrofitted conditions. The retrofit design parameters are determined considering seismic hazard levels to maximize the retrofit effects. The critical parameters of the retrofit system were determined by the confinement-related parameters at moderate and high seismic levels and the stiffness-related parameters at low seismic levels.