Marine biomass (MB) offers an environmentally friendly and readily available carbon source from the ocean. However, the high concentration of alkali and alkaline earth metals (AAEMs) in MB typically reduces the carbon yield and inhibits micropore formation during heat treatment due to catalytic gasification. In this study, we successfully synthesized activated carbon (AC) with a high specific surface area (> 1,500 m2/ g) and significant mesopore content (60%, mean pore size: 3.4 nm) from MB by employing preheating, controlled acid purification, and CO₂ activation. The formation of mesopores in the MB-derived AC was driven by catalytic gasification induced by intrinsic and residual AAEMs during preheating and physical activation processes. We evaluated the potential of the MB-derived AC as an electrode material for electric doublelayer capacitors (EDLCs). The material demonstrated high specific capacitance values of 25.9 F/g and 29.4 F/g at 2.7 V and 3.3 V, respectively, during charge–discharge cycles. These high capacitance values at elevated voltages were attributed to the increased number of solvated ions (e.g., 1.93 mmol/g at 3.3 V) present in the mesopores. Fluorine-19 nuclear magnetic resonance (19F solid-state NMR) analysis revealed a substantial increase in solvated ion concentration within the mesopores of the MB-derived AC electrode at 3.3 V, demonstrating enhanced ion mobility and diffusion. These findings highlight the potential of MB-derived AC as a promising electrode material for high-voltage energy storage applications.