This study focuses on the issue of premature failure in patched sections of asphalt concrete overlays during the service life of existing concrete slabs. These failures are typically exacerbated by extreme weather and heavy traffic. To overcome the low durability and moisture susceptibility of conventional patching materials, the applicability of the GA (Guss Asphalt) mixture, which is known for its excellent waterproofing and adhesion properties, was investigated. Additionally, the fundamental performance characteristics of GA, including its initial stability, moisture resistance, porosity, and plastic-deformation resistance, were evaluated. In this laboratory study, the stability, flow value, and porosity (V a) of six types of pavement patch materials (including GA/MA (Mastic Asphalt), HMA (Hot Mix Asphalt), and CMA (Cold Mix Asphalt) mixtures) were evaluated under various initial curing conditions (3–48 h) and environmental conditions (air and water at 25 °C). Additionally, a wheel tracking test was performed in air conditions at 25 °C to compare and analyze the dynamic stability and plastic-deformation resistance. The results show that GA exhibited the highest stability under all conditions. Its stability increased significantly after 48 h of curing in water, thus demonstrating its superior moisture resistance compared with that of HMA, whose stability decreased significantly. Porosity analysis indicates that the GA/MA mixtures (GMA, PMA, and PGMA) exhibited low porosity (< 1%) and high saturation (> 97%), thus confirming a dense pore structure. Furthermore, the results of the wheel tracking test show that the HMA and GA mixtures exhibited the highest dynamic stability under both 24- and 48-h curing durations. In particular, the GA mixture showed the smallest rutting depth (0.9–1.0 mm), thus indicating its superior resistance to plastic deformation. By contrast, the CP-A mixture showed the largest rutting depth (32.5–38.4 mm), thus indicating the greatest susceptibility to plastic deformation, whereas the CP-B mixture exhibited relatively stable performance with a rutting depth of 5.4–5.6 mm. In general, the GA/MA mixtures exhibited the best performance in terms of long-term stability (48 h of curing), moisture resistance, and plastic-deformation resistance compared with conventional HMA and CMA (CP-A and CP-B) mixtures. GA mixtures are considered the optimal alternative for road patching and repair owing to their excellent moisture resistance and plastic-deformation resistance at 25 °C. However, their field application requires consideration of various environmental conditions, thus necessitating further comprehensive investigations into their crack resistance, adhesion, and plastic-deformation behavior.