논문 상세보기

Comparative Trends in Metaverse‑Game Research: Bibliometric Text Mining and Topic Modeling, 2020–2024 KCI 등재

국내외 메타버스 게임 연구 동향 비교: 텍스트마이닝 기반 서지분석과 토픽모델링(2020-2024)

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/447849
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국컴퓨터게임학회 논문지 (Journal of The Korean Society for Computer Game)
한국컴퓨터게임학회 (Korean Society for Computer Game)
초록

This study maps domestic versus international trajectories in metaverse‑game research via text mining of 203 papers published in 2020–2024 (Korean text: 125; international: 78). We applied structural-equivalence (CONCOR) analysis and estimated topics via latent Dirichlet allocation (LDA). The top‑100 terms are visualized using word clouds. International keywords are led by systematic, technology, and rehabilitation/treatment, reflecting a strong emphasis on technological trends and clinical applications, whereas Korean studies foreground content and development alongside education and UX/immersion. Topic modeling yields four overseas themes (therapy/rehabilitation; mental health; digital accessibility; and education–entertainment convergence) and five Korean themes (technology & systems; UX/interface; healthcare & welfare; content; and platform). International work is dominated by literature studies (61/78; 78.2%), whereas Korean research centers on surveys and development (44 each; 35% apiece), with several case studies (20%). On the basis of these findings, we recommend more controlled experiments and meta‑analyses for Korean papers, and greater prototyping and field testing for international ones, in addition to stronger multidisciplinary collaboration.

목차
ABSTRACT
1. Introduction
2. Research Method
    2.1 Data Collection
    2.2 Text preprocessing and keyword extraction
    2.3 Keyword network and centrality analysis
    2.4 Topic modeling and thematic classification
    2.5 Classification and analysis of research methods
3. Research and Discussion
    3.1 Keyword Frequency and Network Centrality in Domestic and International
    3.2 Thematic Classification via Topic Modeling
    3.3 Comparison of Research Methods in Domestic and International Studies
4. Results and Discussion
Acknowledgement
참고문헌

저자
  • Ji-Young Na(Namseoul University Cheon-an, Korea) | 나지영 Corresponding author