The purpose of this study was to analyze the effects of three different pelvic tilts on a sit-to-stand (STS) and to suggest a new assessment approach based on biomechanical analysis. The three difrent pelvic tilts were: (1) comfortable pelvic tilt sit-to-stand (CPT STS), (2) posterior pelvic tilt sit-to-stand (PPT STS) and (3) anterior pelvic tilt sit-to-stand (APT STS). To determine the onset time of muscle contraction surface electrodes were applied to the rectus femoris muscle (RF), vastus lateralis muscle (VL), biceps femoris muscle (BF), tibialis anterior muscle (TA), gastrocnemius muscle (GCM), and soleus muscle (SOL). The ICC was used for functional linkage analysis. The findings of this study were as follows. First, significant differences were found in kinematic variables and in muscle activation pattern among the three activities. Second, the results of functional integrated analysis revealed that recruited muscle activation patterns changed when the thigh-off was viewed as a reference point. Third, there were independent functional units between the thigh-off and the VL and between the thigh-off and the RF in the functional linkage analysis. The VL and RF acted as prime mover muscles, and more postural adjustment muscle recruitment was required as the demand of postural muscle control increased (PPT STS, APT STS, and CPT STS in order). In conclusion, the findings of this study suggest the following evaluative and therapeutic approach for STS activity. APT STS can be introduced for movement efficiency and functional advantage when abnormal STS is treated. However, excessive APT would change the muscle activation patterns of BF and SOL and require additional postural muscle control to cause abnormal control patterns.