Iron catalyzes the production of free radicals, which can be related to a variety of pathological events, such as cancer and aging. The effect of dietary iron was investigated on formation of colonic aberrant crypt foci (ACF) induced by azoxymethane in male F344 rats. Animals were fed three different diets, including iron-deficient (3 ppm Fe), iron-normal (35 ppm Fe), and iron-overloaded (350 ppm Fe) diets for eight weeks. During the first and second weeks of the experiment, animals received two subcutaneous injections of azoxymethane (AOM, 15 mg/kg body weight) to induce ACF. After staining with methylene blue, the total numbers of ACF and aberrant crypts (AC) were counted on the colonic mucosa. Analysis of blood and serum was performed using a blood cell differential counter and an automatic serum analyzer. Iron-deficient diets induced a significant decrease in red blood cell counts and the values of hemoglobin concentration, hematocrit, mean corpuscular hemoglobin, and mean corpuscular volume, while an iron-overloaded diet did not affect these values. The iron-overloaded diet induced an increase in deposits of iron in the liver of rats, as determined by the ICP method and Perl’s staining. The numbers of ACF per colon showed a slight increase in iron-overloaded or iron-deficient rats, without statistical significance, compared to iron-normal rats. The number of total AC per colon in iron-overloaded rats was significantly higher than that in iron-normal rats (p<0.05). The number of large ACF (≥ 4 AC per ACF) in iron-overloaded rats was also significantly higher than that in iron-normal rats (p<0.05). These results suggest that dietary iron intake may play an important role in colon carcinogenesis in humans and animals.