This study evaluated the field-scale performance of an amorphous iron hydroxide (Fe(OH)3)-based desulfurizing agent for the removal of sulfur-based odorous compounds emitted from wastewater treatment facilities, including equalization tanks and sludge dewatering unit facilities. Hydrogen sulfide (H2S), methyl mercaptan (MM), dimethyl sulfide (DMS), and dimethyl disulfide (DMDS), which account for over 60~80% of total odor impact in such facilities, were targeted in this research. A drytype adsorption system packed with porous amorphous Fe(OH)3 was installed at a wastewater treatment plant and operated continuously for 45 days. Odorous gas concentrations were measured before and after treatment using portable analyzers and gas chromatography-pulsed flame photometric detector (GC-PFPD). The desulfurizing agent demonstrated a high H2S removal efficiency of over 99.9%, even under high inlet concentrations exceeding 500 ppm. Physicochemical analyses including XRD, XRF, EDS and BET confirmed that the material was amorphous, possessed a high surface area (243.4 m2/g), and exhibited a mesoporous structure favorable for gas adsorption. Hysteresis observed in nitrogen adsorption isotherms indicated a bottleneck-shaped pore structure, which enhances adsorption of odorous gases and removal efficiency. Notably, the system maintained stable performance under varying humidity without significant degradation.
본 연구에서는 2009년부터 2024년까지 발생한 수도관 파손 사례 29건(DCIP 16건, SP 13건)을 직접 조사하여 파손의 원인을 규명하였다. DCIP의 파손 유형은 주로 종방향 균열 또는 파손(62.5%, 10건)이었고, 그외 파손 유형으로는 홀(Hole) 발생(18.8%), 원주방향 균열 (12.5%), 접합부 부식으로 인한 누수(6.3%)이었다. SP는 5건의 홀 발생(38.5%), 그외 종방향 균열과 원주방향 균열은 각각 30.8%로 나타났다. 이러한 파손의 원인으로 DCIP는 제조상(관두께 부족, 편차, 몸통 기공, 표면 결함 등)이나 재질 결함(화학적 성분, 금속 구조, 인장강도 등)이 DCIP의 파손에 가장 큰 영향을 미쳤으며, 부식과 관련된 매설 환경과 관 하부 기초 시공(자갈, 보 등)과 관련된 사항이 영향을 주었던 것으로 나타났다. SP는 부식, 관의 처짐을 유발하는 매설 환경이나 시공 관련 요인이 SP에 가장 큰 영향을 미쳤고, 일부 롤벤딩으로 제작된 SP는 종방향 용접 결함(부분 용접 등)으로 인한 반복적인 파손 사고를 유발하는 것으로 나타났다. 마지막으로, DCIP와 SP의 파손 사고는 단일 원인이라기보다는 상기의 다양한 요인들이 복합적으로 작용하여 발생한 것으로 판단된다. 그러나 관의 파손에는 관 제조상, 재료 결함, 시공 요인들이 큰 영향을 주고 있어 상수도 관 진단 시 더욱 집중적으로 조사해야 할 영역으로 판단된다.
Transition metal/porous carbon composite is good electrode candidate since porous carbon provides high surface porosity which promotes the access of electrolyte ions, and transition metal enables redox reactions to improve specific capacitance and energy density. In this study, iron/carbon nanofiber (CNF) composite electrodes were prepared by grafting ferrocenecarboxaldehyde to the CNFs which were fabricated by electrospinning and thermal treatment of polyacrylonitrile (PAN). The presence of iron on the CNF surface was confirmed by SEM/EDS, ICP-MS and XPS. Electrochemical performance was evaluated using a three-electrode cell with 1 M Na2SO4 as an electrolyte. Iron-grafted CNFs exhibited a high specific capacitance of 358 F g− 1 and an energy density of 49.7 Wh kg− 1 at 0.5 A g− 1, which is significantly higher than those for untreated CNFs (68 F g− 1 and 9.4 Wh kg− 1). This demonstrates that this iron/CNF composite is promising candidate for supercapacitor electrode with outstanding energy storage performance.
This study is shown the result of the first year to develop an export 1050MPa-class lightweight ductile iron castings Austempered control arm through the research process to obtain the following results. First, the structure of the optimal design Layout design and development of the component, and then achieve them through the Control Arm rigidity and optimal structure design and robust design of the focus areas of the expected stress Control Arm. Second, to develop a Control Arm reflects the high rigidity and high performance lightweight structures. Control Arm them developed to meet the design and rigidity as required by the consumer through the hollow, and to develop a process for the Core. Third, through optimum alloy composition and heat treatment methods will be derived to derive the amount of iron alloy (Cu, Ni, Mo) and Austempered heat treated and tempered condition. Fourth, through the development of optimum molding technology development component to develop the optimum ADI for the low-stiffness, high-rigidity component development, it attempts to develop a high-strength casting forming technology.
Iron oxide (ε-Fe2O3) is emerging as a promising electromagnetic material due to its unique magnetic and electronic properties. This review focuses on the intrinsic properties of ε-Fe2O3, particularly its high coercivity, comparable to that of rare-earth magnets, which is attributed to its significant magnetic anisotropy. These properties render it highly suitable for applications in millimeter wave absorption and high-density magnetic storage media. Furthermore, its semiconducting behavior offers potential applications in photocatalytic hydrogen production. The review also explores various synthesis methods for fabricating ε-Fe2O3 as nanoparticles or thin films, emphasizing the optimization of purity and stability. By exploring and harnessing the properties of ε-Fe2O3, this study aims to contribute to the advancement of next-generation electromagnetic materials with potential applications in 6G wireless telecommunications, spintronics, high-density data storage, and energy technologies.
Nanoparticles, especially those derived from plant extracts, are becoming increasingly popular as a bio-based, environmentally friendly alternative to conventional technologies. The Maui rose, a flowering plant with medicinal and therapeutic properties, is one of the most important of these materials because its extract component has antibacterial, antioxidant and anti-inflammatory biological activity. In this work, we report on synthesizing and characterizing iron oxide nanoparticles (Fe2O3) extracted from flower plants (Borago), to create persistent and environmentally friendly antibacterial agents. As part of the chemical formation process, Fe2O3 nanoparticles were extracted from specific flower plants utilizing a series of carefully regulated chemical reactions. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM) of the samples were studied. The nanoparticles produced were analyzed using common microbiological methods and studies (EDS). The antibacterial activity of the Fe2O3 nanoparticles and their effect on a range of microorganisms were evaluated. The results demonstrated that Fe2O3 nanoparticles were successfully synthesized with a specific crystal structure and good anti-bacterial activities.
In this study, ferric phosphate precursors were prepared by controlling precipitation time, and the resulting LiFe PO4 active materials were thoroughly investigated. Microscale LiFePO4 cathode materials, designed for high energy density at the cell level, were successfully synthesized through a 10 h co-precipitation. As the reaction time increased, smaller primary particles were aggregated more tightly, and the secondary particles exhibited a more spherical shape. Meanwhile, ammonia did not work effectively as a complexing agent. The carbon coated LiFePO4 (LiFePO4/C) synthesized from the 10 h ferric phosphate precursor exhibited larger primary and secondary particle sizes, a lower specific surface area, and higher crystallinity due to the sintering of the primary particles. Enhanced battery performance was achieved with the LiFePO4/C that was synthesized from the precursor with the smaller size, which exhibited the discharge capacity of 132.25 mAh ‧ g-1 at 0.1 C, 70 % capacity retention at 5 C compared with 0.1 C, and 99.9 % capacity retention after the 50th cycle. The better battery performance is attributed to the lower charge transfer resistance and higher ionic conductivity, resulting from smaller primary particle sizes and a shorter Li+ diffusion path.
전라남도 곡성군에 위치한 대안사(大安寺)는 적인선사(寂忍禪師) 혜철(慧徹, 785~861) 이 창건한 사찰이다. 태안사지(泰安寺誌)에 수록된 「동리산태안사사적(桐裡山泰安寺事蹟) 」에 따르면 대안사(현 태안사)에는 두 구의 약사철조불상이 조성되었다고 한다. 다만 현재는 조성 당시의 온전한 형태의 불상이 아니라 ‘철로 만든 손, 즉 철제(鐵製) 불수(佛手)’ 1점만이 전한다. 이 철제 불수는 남아있는 형태와 선종사찰의 사적기, 일제강점기 공문서 등을 고려할 때, 손바닥을 앞쪽으로 뻗은 수인, 즉 시무외인을 결한 오른손으로 판단된다. 동시기에 창건된 실상사, 삼화사, 성주사의 주존불처럼 대안사 철불도 동리산문의 개창 당시에 조성된 노사나불 로 추정된다. 대안사 금당의 노사나철불은 후대에 사적기를 엮는 과정에서 세속의 통념에 따라 약사철조불로 기록된 것으로 보인다. 동리산문 대안사는 사역 내 금살당(禁殺幢)을 설정하는 등 예영계 왕실의 후원을 받아 사세 를 확장해나갔다. 혜철은 막대한 경제력을 토대로 841년 장보고 사후 급격하게 피폐해진 지방 의 민심을 위무하고 교화하기 위해 철불을 조성하였을 것으로 생각된다. 이는 실상사, 성주사 등의 지방 선종사찰을 후원하여 승려를 포섭한 문성왕의 지방통치책의 일환이며, 대안사 철불 은 잦은 전쟁으로 고통받던 지역민들의 민심을 결집하는 존상(尊像)으로 인식되었을 것이다.
노후 건축물은 불충분한 전단성능으로 인해 위험성이 증가하고 있다. 특히, 콘크리트 보의 전단 성능은 구조물의 붕괴를 지 연시키는 것에 있어 중요하다. 이를 개선하기 위해 본 연구는 철근콘크리트보의 전단보강 기법을 제안하고 성능을 실험적으로 평가하 였다. 이를 위해 기존 니켈-티타늄계 형상기억합금보다 경제성이 우수한 철계 형상기억합금(Fe SMA)을 선정하였다. 불충분한 내부 횡 방향 철근이 반영된 세 개의 콘크리트 보를 제작하였고 무보강, 100mm 간격, 200mm 간격의 보강 간격을 적용하였다. 정적가력시험 결과, 보강된 시험체가 강성 증진에 효과적인 것으로 밝혀졌다. 특히, 200mm 간격의 보강은 콘크리트 보의 연성적인 휨거동도 이끌어 내었다.
In this paper, iron ore tailings (IOT) were separated from the tailings field and used to prepare cement stabilized macadam (CSM) with porous basalt aggregate. First, the basic properties of the raw materials were studied. Porous basalt was replaced by IOT at ratios of 0, 20 %, 40 %, 60 %, 80 %, and 100 % as fine aggregate to prepare CSM, and the effects of different cement dosage (4 %, 5 %, 6 %) on CSM performance were also investigated. CSM’s durability and mechanical performance with ages of 7 d, 28 d, and 90 d were studied with the unconfined compression strength test, splitting tensile strength test, compressive modulus test and freeze-thaw test, respectively. The changes in Ca2+ content in CSM of different ages and different IOT ratios were analyzed by the ethylene diamine tetraacetic acid (EDTA) titration method, and the micro-morphology of CSM with different ages and different IOT replaced ratio were observed by scanning electron microscopy (SEM). It was found that with the same cement dosage, the strengths of the IOT-replaced CSM were weaker than that of the porous basalt aggregate at early stage, and the strength was highest at the replaced ratio of 60 %. With a cement dosage of 4 %, the unconfined compressive strength of CSM without IOT was increased by 6.78 % at ages from 28 d to 90 d, while the splitting tensile strength increased by 7.89 %. However, once the IOT replaced ratio reached 100 %, the values increased by about 76.24 % and 17.78 %, which was better than 0 % IOT. The CSM-IOT performed better than the porous basalt CSM at 90 d age. This means IOT can replace porous basalt fine aggregate as a pavement base.
The structure and magnetic properties of composite powders prepared by ball milling a mixture of Fe2O3 ‧ (0.4-1.0)Fe were investigated. Hysteresis loops and differential scanning calorimetry (DSC) curves are used to characterize the materials and to examine the effect of the solid state reaction induced by ball milling. The results showed that a solid state reaction in Fe2O3 ‧ (0.4-1.0)Fe clearly proceeds after only 1 h of ball milling. The system is characterized by a positive reaction heat of +2.23 kcal/mole. The diffraction lines related to Fe2O3 and Fe disappeared after 1 h of ball milling and, instead, diffraction lines of the intermediate phase of Fe3O4 plus FeO formed. The magnetization and coercivity of the Fe2O3 ‧ 0.8Fe powders were changed by the solid state reaction process of Fe2O3 by Fe during ball milling. The coercivity of the Fe2O3 ‧ 0.8Fe powders increased with increasing milling time and reached a maximum value of 340 Oe after 5 h of ball milling. This indicates the grain size of Fe3O4 was clearly reduced during ball milling. The magnetic properties of the annealed powders depend on the amount of magnetic Fe and Fe3O4 phases.
In response to the growing demand for high-performance lithium-ion batteries, this study investigates the crucial role of different carbon sources in enhancing the electrochemical performance of lithium iron phosphate ( LiFePO4) cathode materials. Lithium iron phosphate ( LiFePO4) suffers from drawbacks, such as low electronic conductivity and low lithium-ion diffusion coefficient, which hinder its industrial development. Carbon is a common surface coating material for LiFePO4, and the source, coating method, coating amount, and incorporation method of carbon have a significant impact on the performance of LiFePO4 materials. In this work, iron phosphate was used as the iron and phosphorus source, and lithium carbonate was used as the lithium source. Glucose, phenolic resin, ascorbic acid, and starch were employed as carbon sources. Ethanol was utilized as a dispersing agent, and ball milling was employed to obtain the LiFePO4 precursor. Carbon-coated LiFePO4 cathode materials were synthesized using the carbothermal reduction method, and the effects of different carbon sources on the structure and electrochemical performance of LiFePO4 materials were systematically investigated. The results showed that, compared to other carbon sources, LiFePO4 prepared with glucose as the carbon source not only had a higher discharge specific capacity but also better rate cycle performance. Within a voltage range of 2.5–4.2 V, the initial discharge specific capacities at 0.1, 0.5, and 1 C rates were 154.6, 145.6, and 137.6 mAh/g, respectively. After 20 cycles at a 1 C rate, the capacity retention rate was 98.7%, demonstrating excellent electrochemical performance.
The current study investigates the seismic performance of shear-dominant RC columns retrofitted with iron-based shape memory alloy (Fe SMA). Three RC columns with insufficient transverse reinforcement were designed and fabricated for lateral cyclic loading tests. Before testing, two specimens were externally confined with carbon fiber-reinforced polymer (CFRP) sheets and self-prestressed Fe SMA strips. The test results showed that both CFRP and Fe SMA performed well in preventing severe shear failure exhibited by the unretrofitted control specimen. Furthermore, the two retrofitted specimens showed ductile flexural responses up to the drift ratios of ±8%. In terms of damage control, however, the Fe SMA confinement was superior to CFRP confinement in that the spalling of concrete was much less and that the rupture of confinement did not occur.
Organic wastewater causes serious environmental pollution, and catalytic oxidation is promising technique for wastewater treatment. Developing green and effective catalysts is currently challenging. In this work, green synthesis of nano zerovalent iron loaded onto porous biochar derived from popcorn is conducted, and catalytic oxidation of Rhodamine B (RhB) is evaluated in the presence of H2O2. Effect of process factors is examined on catalytic performance for RhB removal. The mechanism of RhB removal is discussed by characterizations (Fourier transform infrared spectra and Raman) and UV–vis spectra. RhB removal is improved with high catalyst dosage, low initial RhB concentration, and high reaction temperature, while it is slightly influenced by carbonization temperature of biochar, H2O2 dosage and pH value. Under conditions of BC-250 1.0 g/L, H2O2 0.01 mol/L, pH 6.1, and temperature 30 °C, the removal rate of RhB is 92.27% at 50 min. Pseudo first-order kinetics is used to fitting experimental data, and the activation energy for RhB removal in BC-250/H2O2 system is 39 kJ/mol. RhB removal in BC-250/H2O2 system can be attributed to adsorption effect and catalytic oxidation with the dominant role of hydroxyl radical. This work gives insights into catalytic oxidation of organic wastewater using green catalyst.