The molecular mechanisms and genetics of abamectin resistance mediated by target site insensitivity in the two-spotted spider mite, Tetranychus urticae, were investigated by comparing two isogenic AbaS and AbaR strains. Cloning and sequencing of full-length cDNA fragments of GABA-gated chloride channel genes revealed no polymorphisms between the two strains. However, sequence comparison of the full-length cDNA fragment of a T. urticae glutamate-gated chloride channel gene (TuGluCl) identified a G323D point mutation as being tentatively related with abamectin resistance. In individual F2 progenies obtained by backcrossing, the G323D genotype was confirmed to correlate with abamectin resistance. Bioassays using progeny from reciprocal crossings revealed that the abamectin resistance trait due to TuGluCl insensitivity is incompletely recessive.
This study was conducted to find out the effects of artificial shrinkage (AS) on post-thaw development of bovine embryos. The blastocoelic cavity of blastocyst was punctured to remove its fluid contents and then incubated in the holding medium (HM) for 10 min. The punctured and non-punctured (control) blastocysts were equilibrated in vitrification solution 1 (VS1; TCM-199+20% FBS+10% EG) for 5 min and vitrification solution 2 (VS2; TCM199+20% FBS+35% EG+5% PVP+0.5 M Sucrose) for 1 min and vitrified by direct dropping into the liquid nitrogen. Vitrified blastocysts (punctured and control) were thawed and cultured in vitro (12 hr) for studying survival and hatching rates. The levels of shrinkage were measured by the volume of the blastocyst during equilibration in VS1 (at 1, 3 and 5 min of equilibration) and VS2 (at 30 and 60 sec of equilibration) that was considering the volume of non-punctured blastocyst in HM as 100%. The levels of shrinkage were higher in punctured group (62.4, 64.6, 64.3% at 1, 3 and 5 min in VS1; 50.6 and 52.7% at 30 and 60 sec in VS2) than control group (84.8, 86.6, 86.4% at 1, 3 and 5 min in VS1; 72.1 and 68.8% at 30 and 60 sec in VS2), but within each group the levels of shrinkage were similar. The survival (90.9%) and hatching (50.0%) rates of vitrified blastocysts at 12 hr post-thaw were higher in punctured group than that in control group (76.9% and 0.0% respectively). We confirmed that vitrification solutions (VS1 and VS2) have no toxic effect on the survival of blastocysts because the survival rates of blastocysts exposed to VS1 and VS2 for 24 hr were similar between punctured and control groups (94.3 vs. 96.0%; p>0.05). In conclusion, the preliminary data show that AS of blastocyst may improve survival and hatching rate after thawing.
In this paper we examined the association of Infrared Dark Cloud (IRDC) cores with YSOs and the geometric properties of the IRDC cores. For this study a total of 13,650 IRDC cores were collected mainly from the catalogs of the IRDC cores published from other studies and partially from our catalog of IRDC cores containing new 789 IRDC core candidates. The YSO candidates were searched for using the GLIMPSE, MSX, and IRAS point sources by the shape of their SED or using activity of water or methanol maser. The association of the IRDC cores with these YSOs was checked by their line-of-sight coincidence within the dimension of the IRDC core. This work found that a total of 4,110 IRDC cores have YSO candidates while 9,540 IRDC cores have no indication of the existence of YSOs. Considering the 12,200 IRDC cores within the GLIMPSE survey region for which the YSO candidates were determined with better sensitivity, we found that 4,098 IRDC cores (34%) have at least one YSO candidate and 1,072 cores among them seem to have embedded YSOs, while the rest 8,102 (66%) have no YSO candidate. Therefore, the ratio of [N(IRDC core with protostars)]/[N(IRDC core without YSO)] for 12,200 IRDC cores is about 0.13. Taking into account this ratio and typical lifetime of high-mass embedded YSOs, we suggest that the IRDC cores would spend about 104~105 수식 이미지 years to form high-mass stars. However, we should note that the GLIMPSE point sources have a minimum detectable luminosity of about 1.2 L⊙ at a typical IRDC core's distance of ~4 kpc. Therefore, the ratio given here should be a 100ver limit and the estimated lifetime of starless IRDC cores can be an upper limit. The physical parameters of the IRDC cores somewhat vary depending on how many YSO candidates the IRDC cores contain. The IRDC cores with more YSOs tend to be larger, more elongated, and have better darkness contrast than the IRDC cores with fewer or no YSOs.
Yttria stabilized zirconia (Y-CSZ) single crystals show plastic deformation at high temperatures byactivating dislocations. The effect of strain rate on the plastic behavior of this crystal was studied. As increasingstrain rate from ε=1.04×10-5sec-1 to 2.08×10-5sec-1 the yield drop was suppressed and resulted in higherYoung's modulus and yield stress. Dislocation structures of the strained crystals were analyzed using atransmission electron microscope to elucidate the plastic behavior of these crystals. In the early stage of plasticdeformation, dislocation dipoles and prismatic dislocation loops were formed in both samples. However,dislocation density was increased by increasing strain rate. Strong sessile dislocations were observed in thesample with higher strain rate, which may cause the higher work hardening.
Yttria stabilized zirconia single crystals show plastic deformation at high temperatures by activating dislocations. The plastic deformation is highly dependent on crystallographic orientation. When the samples were deformed at different orientations, stress-strain curves changed by operating different slip systems. The strength of samples was also highly dependent on crystallographic orientation, i.e., samples without yield drop showed higher strength than that of samples exhibiting yield drop. The slip systems in the sample deformed along<112>,<111> and<001> agreed with the theoretical values of the plastic deformation, following Schmid's Law. Dislocations play a major role in the plastic deformation of this crystal. At the early stages of plastic deformation, all samples exhibited dislocation dipoles and, in the later stages, dislocation interactions occurred by forming nodes, tangles and networks. In this study, three different orientations, [11-2], [111] and [001] were employed to explain the plastic deformation behavior. A microstructural analysis was performed to elucidate the mechanism of the plastic behavior of this crystal.