검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        2.
        2015.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report results of the performance evaluation of a new hardware correlator in Korea, the Daejeon correlator, developed by the Korea Astronomy and Space Science Institute (KASI) and the National Astronomical Observatory of Japan (NAOJ). We conduct Very Long Baseline Interferometry (VLBI) observations at 22 GHz with the Korean VLBI Network (KVN) in Korea and the VLBI Exploration of Radio Astrometry (VERA) in Japan, and correlated the aquired data with the Daejeon correlator. For evaluating the performance of the new hardware correlator, we compare the correlation outputs from the Daejeon correlator for KVN observations with those from a software correlator, the Distributed FX (DiFX). We investigate the correlated flux densities and brightness distributions of extragalactic compact radio sources. The comparison of the two correlator outputs shows that they are consistent with each other within < 8%, which is comparable with the amplitude calibration uncertainties of KVN observations at 22 GHz. We also find that the 8% difference in flux density is caused mainly by (a) the difference in the way of fringe phase tracking between the DiFX software correlator and the Daejeon hardware correlator, and (b) an unusual pattern (a double-layer pattern) of the amplitude correlation output from the Daejeon correlator. The visibility amplitude loss by the double-layer pattern is as small as 3%. We conclude that the new hardware correlator produces reasonable correlation outputs for continuum observations, which are consistent with the outputs from the DiFX software correlator.
        4,500원
        4.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we propose a new re-quantization method after FFT processing to prevent the distortion of correlation result of VCS (VLBI Correlation Subsystem). The re-quantization is used to rearrange the data bit so as to reduce the data rate processed as 16-bit of FFT result of VCS. Having done this procedure, we found that the distorted spectrum of correlation result occurred in the delay tracking experiments by the re-quantization method introduced for initial design of VCS. In order to solve this, two kinds of re-quantization method, that is, the comparison and selection-type, are proposed. The first is to re-quantize the FFT result as a valid-bit by comparing with the input data after determining the adequate threshold. The second is manually to select the valid-bit of FFT result after finding the valid-field of data according to the bit-distribution of input data. We confirmed that the second is more effective compared with the first through the experimental result, and it will be implemented without so much modification of applied method in the condition of the limited resource of FPGA. The re-quantization is, however, carried out with 4-bit in the proposed second method for FFT result, and then the distortion of correlation result is also appeared. To fix this problem, the bit for re-quantization is extended to 8-bit. The proposed 8-bit selection-type is effectively verified so that the distortion of correlation result disappeared by applying to VCS in consequence of the simulation and correlation experiments.
        4,200원
        5.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we describe the installation of VLBI Correlation Subsystem (VCS) main product and its performance at the Korea-Japan Correlation Center (KJCC). The VCS main product was installed at KJCC in August 2009. For the overall performance evaluation of VCS, playbacks, Raw VLBI Data Buffer (RVDB) system, and Data Archive (DA) system were installed together. The VCS main product was connected between RVDB and DA, and the correlation results were put into the DA to confirm the normal operation of VCS 16 station mode configuration. The evaluation test was first performed with 4 station mode, same as the factory test of VCS main product. Based on the results of 4 station mode, the same evaluation test was conducted for 16 station mode of VCS. We found that the correlation results of VCS were almost similarly compared to those of the Mitaka FX Correlator. Through the test results, we confirmed that the problems such as spectrum errors, delay parameter processing module and field programmable gate array errors in antenna unit, which were generated at the factory test of VCS main product, were clearly solved. And we verified the performance and connectivity of VCS by obtaining the expected correlation results and we also confirmed that the performance of VCS was sufficient for real VLBI observation data in both 4 and 16 station modes.
        4,900원
        8.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We present the performance test results of VLBI Correlation Subsystem (VCS) trial product which was being developed for 1 year from August 2007. It is a core component of Korea-Japan Joint VLBI Correlator (KJJVC). The aim for developing VCS trial product is to improve the performance of VCS main product to reduce the efforts and cost, and to solve the design problems by performing the preliminary test of the manufactured trial product. The function of VCS trial product is that it is able to process the 2 stations-1 baseline, 8 Gbps/station speed, 1.2 Gbps output speed with FX-type. VCS trial product consists of Read Data Control Board (RDC), Fourier Transform Board (FTB), and Correlation and Accumulation Board (CAB). Almost main functions are integrated in the FTB and CAB board. In order to confirm the performance of VCS trial product functions, the spectral analysis, delay compensation and correlation processing experiments were carried out by using simulation and real observation data. We found that the overflow problem of re-quantization after FFT processing was occurred in the delay compensation experiment. We confirmed that this problem was caused by valid bit-expression of the re-quantized data. To solve this problem, the novel method will be applied to VCS main product. The effectiveness of VCS trial product has been verified through the preliminary experimental results, but the overflow problem was occurred.
        5,100원
        11.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we introduce the performance evaluation and development of Raw VLBI Data Buffer(RVDB) system for the synchronized playback processing of observed data in Korea-Japan Joint VLBI Correlator(KJJVC). The high-speed correlation processing system is under development so that the radio data obtained with 8192 channels and 8 Gbps speed from 16 stations will be able to be processed. When the recorded data of each station are played to correlator, the time synchronization of each station is very important because the correlator should process the data obtained with same time and condition. There are many types of recorder systems in the East Asia VLBI Network (EAVN). Therefore it is required to prepare the special time synchronized playback processing system to synchronize the time tag of observed data. The developed RVDB system consists of Data Input Output(DIO), 10GbE switch, and Disk Data Buffer(DDB). It can record the data with maximum 2 Gbps speed, and can play back the data to correlator with nominal 2 Gbps speed. To enable to play back the data of different playback system to the correlator, we developed the high-speed time synchronized playback processing system. We carried out the experiments of playing back and correlation for gigabit correlator and VCS trial product so as to confirm the performance of developed time synchronized playback processing system. In case of online and offline playing back experiment for gigabit correlator, we confirmed that the online and offline correlation results were the same. In case of playing back experiment for VCS trial product, we verified that the wide band and narrow band correlation results were also the same. Through the playing back experiments of RVDB system, the effectiveness of developed RVDB system was verified. In this paper, the system design, construction and experimental results are shown briefly.
        5,100원
        12.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper describes the digital back-end system for getting the data to analyze the user observation mode by digitalize the analog data after receiving the space radio using the radio telescope, The received analog data will be digitalized by high-speed sampler with 1 Gsps for 4 channel frequency band of millimeter wave, and the digital data will be transported through the fiber-optic digital transmission system and WDM(wavelength division multiplex) to observation building, The wideband digital FIR(Finite Impulse Response) filters analyze the data for user observation mode to record the data in high-speed recorder with 1 Gbps. In this paper, we introduce the overall system configuration and features combined by various information and communication technology in radio astronomy briefly, which will be adopted by KVN(Korean VLBI Network).
        4,000원