A fiber-optic reference signal transmission system, which transmits the 1.4 GHz reference signal from H-maser to receiver cabin in radio telescopes, was adopted for compensating the phase changes due to temperature variation and antenna movement. At the first experiment, the remote signal’s phase changed more than 15 degrees at 1.4 GHz. We found unstable components in sub-system experiments and replaced them. The main cause of unstable phase stability was the unaligned polarization axis between Laser Diode and Mach-Zehnder Modulator (MZM). The improved system stability showed 1 × 10-16 allan standard deviation at 1,000 sec integration time with the antenna fixed. When the antenna moves in the azimuth axis, the 1.4 GHz remote signal showed the phase change smaller than 0.2 degrees.
We have developed superconducting mixer receivers for 129 GHz VLBI observation in Korean VLBI Network (KVN). The developed mixer has a radial waveguide probe with simple transmission line L-C transformer as a tuning circuit to its 5 series-connected junctions, which can have 125 - 165 GHz as the operation radio frequency (RF). For intermediate frequency (IF) signal path a high impedance quarter-wavelength line connects the probe to one end of symmetric RF chokes. The double side band (DSB) receiver noise of the mixer was about 40 K over 4 - 6 GHz IF band, whereas we achieved the uncorrected single side band (SSB) noise temperature of about 70 K and better than 10 dB image rejection ratio in 2SB configuration with 8 - 10 GHz IF band. Insert-type receiver cartridges employing the mixers have been under commission for KVN stations.
In this paper, we describe the installation of VLBI Correlation Subsystem (VCS) main product and its performance at the Korea-Japan Correlation Center (KJCC). The VCS main product was installed at KJCC in August 2009. For the overall performance evaluation of VCS, playbacks, Raw VLBI Data Buffer (RVDB) system, and Data Archive (DA) system were installed together. The VCS main product was connected between RVDB and DA, and the correlation results were put into the DA to confirm the normal operation of VCS 16 station mode configuration. The evaluation test was first performed with 4 station mode, same as the factory test of VCS main product. Based on the results of 4 station mode, the same evaluation test was conducted for 16 station mode of VCS. We found that the correlation results of VCS were almost similarly compared to those of the Mitaka FX Correlator. Through the test results, we confirmed that the problems such as spectrum errors, delay parameter processing module and field programmable gate array errors in antenna unit, which were generated at the factory test of VCS main product, were clearly solved. And we verified the performance and connectivity of VCS by obtaining the expected correlation results and we also confirmed that the performance of VCS was sufficient for real VLBI observation data in both 4 and 16 station modes.