검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 84

        1.
        2012.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        KASI (Korea Astronomy and Space Science Institute) has developed an SLR (Satellite Laser Ranging) system since 2008. The name of the development program is ARGO (Accurate Ranging system for Geodetic Observation). ARGO has a wide range of applications in the satellite precise orbit determination and space geodesy research using SLR with mm-level accuracy. ARGO-M (Mobile, bistatic 10 cm transmitting/40 cm receiving telescopes) and ARGO-F (Fixed stationary, about 1 m transmitting/receiving integrated telescope) SLR systems development will be completed by 2014. In 2011, ARGO-M system integration was completed. At present ARGO-M is in the course of system calibration, functionality, and performance tests. It consists of six subsystems, OPS (Optics System), TMS (Tracking Mount System), OES (Opto-Electronic System), CDS (Container-Dome System), LAS (Laser System) and AOS (ARGO Operation System). In this paper, ARGO-M system structure and integration status are introduced and described.
        4,200원
        4.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        KASI and Seoul National University developed the Fast Imaging Solar Spectrograph (FISS) as one of major scientific instruments for the 1.6 m New Solar Telescope (NST) and installed it in the Coude room of the NST at Big Bear Solar Observatory (BBSO) in May, 2010. The major objective of the FISS is to study the fine-scale structures and dynamics of plasma in the photosphere and chromosphere. To achieve it, the FISS is required to take data with a spectral resolution higher than 105 at the spectrograph mode and a temporal resolution less than 10 seconds at the imaging mode. The FISS is a spectrograph using Echelle grating and has characteristics that can observe dual bands (Hα and CaII 8542) simultaneously and perform fast imaging using fast raster scan and two fast CCD cameras. In this paper, we introduce briefly the whole process of FISS development from the requirement analysis to the first observations.
        4,000원
        14.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The International Astronomy Olympiad (IAO) was established by the Euro-Asian Astronomical Society in order to disseminate astronomical knowledge, promote international cooperation in astronomical education area and recognize the importance of astronomy in far-reaching field of science and human culture. The first IAO competition was held at the Special Astrophysical Observatory of the Russian Academy of Sciences located in the north Caucasus of Russia in 1996. Since then, it has been held every year. This paper describes the present status of the IAO main regulations regarding its operation and major results by year, related institutions, and organizations. We created a scientific inquiry framework to analyze past IAO problems in the recognitive aspect in order to measure levels of the scientific knowledges and the scientific thinking abilities. Through this analysis, we can understand the current status of the IAO, and examine the future direction of Korea Astronomy Olympiad. Also, we can make preparation for the IAO competition and the education of delegates.
        4,500원
        15.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we introduce the performance evaluation and development of Raw VLBI Data Buffer(RVDB) system for the synchronized playback processing of observed data in Korea-Japan Joint VLBI Correlator(KJJVC). The high-speed correlation processing system is under development so that the radio data obtained with 8192 channels and 8 Gbps speed from 16 stations will be able to be processed. When the recorded data of each station are played to correlator, the time synchronization of each station is very important because the correlator should process the data obtained with same time and condition. There are many types of recorder systems in the East Asia VLBI Network (EAVN). Therefore it is required to prepare the special time synchronized playback processing system to synchronize the time tag of observed data. The developed RVDB system consists of Data Input Output(DIO), 10GbE switch, and Disk Data Buffer(DDB). It can record the data with maximum 2 Gbps speed, and can play back the data to correlator with nominal 2 Gbps speed. To enable to play back the data of different playback system to the correlator, we developed the high-speed time synchronized playback processing system. We carried out the experiments of playing back and correlation for gigabit correlator and VCS trial product so as to confirm the performance of developed time synchronized playback processing system. In case of online and offline playing back experiment for gigabit correlator, we confirmed that the online and offline correlation results were the same. In case of playing back experiment for VCS trial product, we verified that the wide band and narrow band correlation results were also the same. Through the playing back experiments of RVDB system, the effectiveness of developed RVDB system was verified. In this paper, the system design, construction and experimental results are shown briefly.
        5,100원
        16.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A software simulator is developed for verifying the VLBI Correlation Subsystem (VCS) trial product hardware. This software simulator includes the delay tracking, fringe rotation, bit-jump, FFT analysis, re-quantization, and auto/cross-correlation functions so as to confirm the function of the VCS trial product hardware. To verify the effectiveness of the developed software simulator, we carried out experiments using the simulation data which is a mixed signal with white noise and tone signal generated by software. We confirmed that the performance of this software simulator is similar as that of the hardware system. In case of spectral analysis and re-quantization experiment, a serious problem of the VCS hardware, which is not enough for expressing the data stream of FFT results specified in VCS hardware specification, was found by this software simulator. Through the experiments, the performance of software simulator was verified to be efficient. In future, we will improve and modify the function of software simulator to be used as a software correlator of Korea-Japan Joint VLBI Correlator (KJJVC).
        5,200원
        19.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we analyze the scientific inquiries type on Almanac and Historical Astronomy asked through the Q&A service in Korea Astronomy and Science Institute(KASI) webpage with the aid of scientific inquiries analysis methods. We also study the contents of the questions. Specifically, we have created statistics of questions and inquiries, and have developed categories to analyze the characteristics of questions with regard to their cognitive aspects. Each question is categorized as either of the two elements based on their recognitive aspect: science knowledge or science study. Each element also has sub-categories that help the reader understand the characteristics of the questions. For the analysis, we used the sample consisting of questions collected from April, 2005 to June, 2007. Through this study, we achieved a better understanding of the questions in the area of Almanac and Historical Astronomy asked in the Q&A service. Throughout this study, we find that the need of questions in the area of Almanac and Historical Astronomy are increasing with time, and the overall quality of the questions is getting improved. As we expect that the number of people using our Q&A service will increase and that the questions will get more difficult to answer, development of improved contents is required.
        4,000원
        20.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we describe the proposed KVN (Korean VLBI Network) clock system in order to make the observation of the VLBI effectively. In general, the GPS system is widely used for the time information in the single dish observation. In the case of VLBI observation, a very high precise frequency standard is needed to perform the observation in accordance with the observation frequency using the radio telescope with over 100km distance. The objective of the high precise clock system is to insert the time-tagging information to the observed data and to synchronize it with the same clock in overall equipments which used in station. The AHM (Active Hydrogen Maser) and clock system are basically used as a frequency standard equipments at VLBI station. This system is also adopted in KVN. The proposed KVN clock system at each station consists of the AHM, GPS time comparator, standard clock system, time distributor, and frequency standard distributor. The basic experiments were performed to check the AHM system specification and to verify the effectiveness of implemented KVN clock system. In this paper, we briefly introduce the KVN clock system configuration and experimental results.
        4,200원
        1 2 3 4 5