검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,282

        301.
        2023.10 구독 인증기관·개인회원 무료
        Immune priming is an increased immunity after prior exposure to a specific pathogen as a kind of adaptive immunity and occurs in insects. However, its underlying mechanism is elusive in insects. Immune priming was detected in a lepidopteran insect, Spodoptera exigua. Prior infection with a heat-killed pathogenic bacterium, Xenorhabdus hominickii, increased survival upon the second infection of the live bacteria compared to larvae without pre-exposure. Plasma collected from larvae with the prior infection significantly up-regulated cellular and humoral immune responses compared to the similar treatment without prior exposure. However, when the active plasma exhibiting immune priming was heat-treated, it lost the priming activity, suggesting a presence of protein factor(s) in the immune priming. Lipocalin is a lipid carrier protein and is well known in vertebrates for diverse physiological functions including immunity. An apolipoprotein D3 (ApoD3) is known to be a lipocalin functioning in immune priming in a mosquito, Anopheles gambiae. A homologous ApoD3 (Se-ApoD3) was identified in S. exigua. Se-ApoD3 was expressed in all developmental stages and larvae, it was highly expressed in hemocytes. RNA interference (RNAi) of Se-ApoD3 expression was performed by injecting its specific dsRNA. The larvae treated with the RNAi were impaired in cellular and humoral immune responses. Furthermore, the plasma collected from RNAi-treated larvae lost the immune priming even at the prior exposure. These suggest that Se-ApoD3 mediates the immune priming in S. exigua.
        302.
        2023.10 구독 인증기관·개인회원 무료
        As a result of our taxonomic study of the genus Epistrophe (Walker) in Korea, we recognized a total of 16 species including seven putative new species (code names are temporarily given from A to F). We also conducted a DNA barcoding analysis of 25 nominal species and 130 samples of Epistrophe. In our barcoding analysis, despite insufficient bootstrap support, Epistrophe formed a cluster with two genera, Epistrophella and Leucozona, topologically supporting their close relationships. Our analysis also showed some interesting results worthy of attention: First, at least two distinct cryptic species were found within the E. grossulariae cluster. Second, the taxon identified as E. nitidicollis seems to represent at least three distinct species. Third, three BOLD-deposited European samples listed as E. olgae showed almost identical barcode sequences with the European E. nitidicollis.
        303.
        2023.10 구독 인증기관·개인회원 무료
        양봉꿀벌은 한 마리 여왕벌을 중심으로 일벌 및 수벌들이 군집을 이루고 있는 사회성 곤충이다. 꿀벌은 여왕벌 이 깨어나면 처녀비행 (반경 2.4~7.4km )을 하여 공중에서 여러 마리의 수벌들과 교미를 한 후, 자신의 봉군 내부로 돌아와 평생을 살아가는 생태적 특성을 가지고 있다. 이와 같은 이유로 계통 증식 또는 품종 육종에서 외부의 오염원을 차단하기 위해서는 여왕벌과 수벌이 격리된 지역에서 교미가 이루어져야 한다. 본 연구는 여왕벌과 수벌이 격리될 수 있는 국내 도서지역을 중심으로 격리교미 연구를 2020년부터 2023년 봄부터 가을까지 수행하 였으며, 육종을 위한 격리교미의 효율성을 분석하고자 하였다. 도서지역은 전남 - 낙월도, 전북 - 위도, 왕등도, 식도에서 수행되었으며, 섬 크기, 경관 환경 요인, 교미 시기 등에 의해 격리교미의 성공률이 어떻게 변하는지를 확인하였다.
        304.
        2023.10 구독 인증기관·개인회원 무료
        Process-based models are effective in addressing spatially explicit dispersal of invasive species based on life mechanisms including birth, death, movement and response to environmental factors. An invading alien species, the western conifer seed bug (Leptoglossus occidentalis), spreads rapidly in the Korean peninsula since 1988. Process-based models were developed to include the rules occurred in population dynamics of the western conifer seed bug population. Passive movements were additionally linked to the models to present local and global transportations due to sapling trades. Simulation results presented the rapid dispersal of the pest species, comparable to field data. Model parameters including the Alle effect threshold and contribution of global transportation were adjusted to reveal spatially-explicit advancement patters of the species. Utilization of process-based models is further discussed in monitoring and management of forest insect pests in field conditions.
        305.
        2023.10 구독 인증기관·개인회원 무료
        Natural enemy insects, including predators and parasitoids, are beneficial organisms that feed upon other agricultural pests. Using natural enemy insects to suppress or prevent outbreak of pests is a key component of integrated pest management strategy. It is safe, effective, and environmentally friendly and can be applied easily to the greenhouses, filed crops and orchards. Rearing and application of natural enemy insects in biocontrol in China have a long history. As early as 1700 years ago, the predator Oecophylla smaragdina has been used for controlling many kinds of citrus pests. Up to now, more than 30 species of natural enemies that can be artificially mass produced and widely used for biological control of many kinds of pests, including caterpillars, aphids, whiteflies, thrips, leaf mites and scales in China. The annual average application area of natural enemies is over 11.34 million hectares. However, with the increasing demand of using natural enemies in biological control programs, the development of natural enemy insect industrialization still face many challenges. It is urgent to explore more effective candidate natural enemies, improve the production efficiency, increase the shelf life of products and enhance the colonization of natural enemy insects after release, and thus facilitate the commercially production and application of natural enemies. This is of great significance for comprehensively promoting the use of green prevention and control techniques for crop diseases and pests, reducing the use of chemical pesticides, ensuing the quality and safety of food and agricultural products, and ultimately promoting sustainable agricultural development.
        306.
        2023.10 구독 인증기관·개인회원 무료
        Honey bees are crucial pollinators for agricultural and natural ecosystems, but are experiencing heavy mortality in Korea due to a complex suite of factors. Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. Finding solutions involves knowing the factors associated with high loss rates. To investigate whether loss rates are related to Varroa control and climate condition, we surveyed beekeepers in korea after wintering (2021–2022 to 2022–2023). The results show an average colony loss rate of 46%(2022) and 17%(2023), but over 40% colony loss before wintering at 2022. Beekeepers attempt to manage their honey bee colonies in ways that optimize colony health. Disentangling the impact of management from other variables affecting colony health is complicated by the diversity of practices used and difficulties handling typically complex and incomplete observational datasets. We propose a method to 1) Varroa mite population Control by several methods , and 2) Many nursing bee put in hive before wintering.
        307.
        2023.10 구독 인증기관·개인회원 무료
        최근 국내에서는 꿀벌 대량소실 현상이 2022년부터 전국적으로 발생하고 있다. 우리나라 뿐 만 아니라, 전세계 적으로 양봉산업에 큰 위협이 되고 있는 봉군붕괴현상은 2016년 미국에서 세계 최초로 보고되었다. 국내에서는 2022년 민관 합동조사 결과, 이상기온, 응애, 말벌 등이 주요 원인으로 지목되었다. 대량소실 현상을 보인 양봉농 가와 정상 농가의 병원체 검출 비교 결과, 유의성있게 검출이 증가되는 병원체는 발견되지 않았다. 그러나, Tyrophagus mite, Trypanosome, Lake Sinai virus, Apis mellifera filamentous virus 등의 신종 응애, 원충 및 바이러 스 감염이 추가로 확인되었다. 국내에서 새롭게 감염이 확인된 기생충과 병원체가 대량소실, 나아가 봉군붕괴현 상에 직간접적으로 영향을 주었을 것으로 사료되며, 지속적인 조사와 연구개발을 통해 기후등 환경변화에 따른 신종 질병 검색과 대책을 마련해야 할 것이다.