검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 168

        41.
        2009.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A necessary condition for the formation of a filament is magnetic helicity. In the present paper we seek the origin of magnetic helicity of intermediate filaments. We observed the formation of a sinistral filament at the boundary of a decaying active region using full-disk Hα images obtained from Big Bear Solar Observatory. We have measured the rate of helicity injection during the formation of the filament using full-disk 96 minute-cadence magnetograms taken by SOHO MDI. As a result we found that 1) no significant helicity was injected around the region (polarity inversion line; PIL) of filament formation and 2) negative helicity was injected in the decaying active region. The negative sign of the injected helicity was opposite to that of the filament helicity. On the other hand, at earlier times when the associated active region emerged and grew, positive helicity was intensively injected. Our results suggest that the magnetic helicity of the intermediate filament may have originated from the helicity accumulated during the period of the growth of its associated active region.
        4,000원
        42.
        2008.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, Choe & Cheng (2002) have demonstrated that multiple magnetic flux systems with closed configurations can have more magnetic energy than the corresponding open magnetic fields. In relation to this issue, we have addressed two questions: (1) how much fraction of eruptive solar active regions shows multiple flux system features, and (2) what winding angle could be an eruption threshold. For this investigation, we have taken a sample of 105 front-side halo CMEs, which occurred from 1996 to 2001, and whose source regions were located near the disk center, for which magnetic polarities in SOHO/MDI magnetograms are clearly discernible. Examining their soft X-ray images taken by Yohkoh SXT in pre-eruption stages, we have classified these events into two groups: multiple flux system events and single flux system events. It is found that 74% (78/105) of the sample events show multiple flux system features. Comparing the field configuration of an active region with a numerical model, we have also found that the winding angle of the eruptive flux system is slightly above 1.5π.
        4,000원
        51.
        2007.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Statistical analyses were performed to investigate the relative success and accuracy of daily maximum X-ray flux (MXF) predictions, using both multilinear regression and autoregressive time-series prediction methods. As input data for this work, we used 14 solar activity parameters recorded over the prior 2 year period (1989-1990) during the solar maximum of cycle 22. We applied the multilinear regression method to the following three groups: all 14 variables (G1), the 2 so-called 'cause' variables (sunspot complexity and sunspot group area) showing the highest correlations with MXF (G2), and the 2 'effect' variables (previous day MXF and the number of flares stronger than C4 class) showing the highest correlations with MXF (G3). For the advanced three days forecast, we applied the autoregressive timeseries method to the MXF data (GT). We compared the statistical results of these groups for 1991 data, using several statistical measures obtained from a 2x2 contingency table for forecasted versus observed events. As a result, we found that the statistical results of G1 and G3 are nearly the same each other and the 'effect' variables (G3) are more reliable predictors than the 'cause' variables. It is also found that while the statistical results of GT are a little worse than those of G1 for relatively weak flares, they are comparable to each other for strong flares. In general, all statistical measures show good predictions from all groups, provided that the flares are weaker than about M5 class; stronger flares rapidly become difficult to predict well, which is probably due to statistical inaccuracies arising from their rarity. Our statistical results of all flares except for the X-class flares were confirmed by Yates' X2 statistical significance tests, at the 99% confidence level. Based on our model testing, we recommend a practical strategy for solar X-ray flare predictions.
        4,000원
        1 2 3 4 5