검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5,399

        583.
        2022.10 구독 인증기관·개인회원 무료
        The guidelines for cyber security regulations at domestic and foreign nuclear facilities, such as KINAC/RS-015, NRC’s RG5.71 and NEI 13-10, require the establishment of security measures to maintain the integrity of critical digital assets (CDAs) and protect them as threats to the supply process. According to the requirements, cyber security requirements shall be reflected in purchase requirements from the time of introduction of CDAs, and it shall also be verified whether cyber security security measures were properly applied before introduction. Domestic licensees apply measures to control the supply chain in the nuclear safety sector to cyber security policies. The safety sector supply chain control policy has areas that functionally overlap with the requirements of cyber security regulations, so regulatory guidelines in the safety sector can be applied. However, since most of the emergency preparedness and physical protection functions introduce digital commercial products, there is a limit to applying the control of the supply chain in the safety field as it is. It is necessary to apply supply chain control operator policies, procedures, and purchase requirements for each SSEP function, or to establish cyber security integrated supply chain control requirements. In this paper, based on the licensee’s current supply chain control policy, the cyber security regulation plan for supply chain control according to the SSEP (Safety-Security-Emergency Preparedness) function of CDAs is considered.
        587.
        2022.10 구독 인증기관·개인회원 무료
        The crisis of climate change aroused international needs to reduce the greenhouse gas emission in energy sector. Government of South Korea formulated an agenda of carbon neutrality through announcing 2050 Net-Zero Carbon Scenario A and B in October 2021. As the power supply from renewable energy increases, it becomes a core element to take into account the daily intermittency of renewable energy in analyzing the upcoming energy plans. However, the existing yearly Load Duration Curve is insufficient for applying day and night power change in daily scale into energy mix analysis, since it derives the energy mix for whole year on the basis of classifying annual base load and peak load. Therefore, a new energy mix simulation model based on the daily power load and supply simulation is needed for the future energy analysis. In this study we developed a new model which simulates the average power supply and demand daily (over a 24 hour period) for each season. The model calculates the excess and shortage power during day and night by integrating each energy’s daily power pattern. The 2050 Net-Zero Carbon Scenario A was used for the model verification, during which the same amounts of power production from each energy source were applied: nuclear, renewable, carbon-free gas turbine, fuel cell and byproduct gas. Total power demand pattern and renewable energy production pattern were drawn from the data of 2017 power production, and Pumped-storage Hydroelectricity and Energy Storage System were used as day-to-night conversion. Detailed assumptions for each energy were based on the Basis of Calculation for Net-Zero Carbon Scenario from Government. The model was verified with three cases which were divided depending on the method of hydrogen production and whether the Curtailment and Conversion Loss (CCL) of renewable energy were considered or not. Case 1 assumed production of hydrogen occurred for 24 hours while not considering CCL, had 0% relative error in comparison of total annual power production, and case 2, considering CCL, had a 1.741% relative error. Case 3 assumed production of hydrogen occurred only during daytime with excess power and CCL consideration, yielded 0.493% relative error in total amount of hydrogen production, confirming that the model sufficiently describes the Government’s Scenario A with the input of total power production. This model is expected to be used for analyzing further energy mix with different ratios of each energy source, with special focus on nuclear and renewable energy sources.